AI Research

The AI group has a mission of building the next-gen RiskOps AI to safeguard businesses and people from fraud and financial crime that is responsible and explainable by design. The group aims to reimagine financial services, risk management and financial crime prevention through the lens of state-of-the-art Human-Centered AI and propose product solutions to significant problems, such as identity, detection, and automation, while mitigating bias and promoting transparency.

Research Focus:

  • AI in Financial Services
  • AutoML
  • AI safety, fairness, privacy, robustness
  • ML Monitoring, Explainability and Observability
  • Deep Learning & Network Science

Recent Publications

RIFF: Inducing Rules for Fraud Detection from Decision Trees

João Lucas Martins, João Bravo, Ana Sofia Gomes, Carlos Soares, Pedro Bizarro

Published at RuleML+RR 2024

arXiv | YouTube

Cost-Sensitive Learning to Defer to Multiple Experts with Workload Constraints

Jean V. Alves, Javier Liébana, Diogo Leitão, Pedro Saleiro, Sérgio Jesus, Marco O. P. Sampaio, Mário A. T. Figueiredo, Pedro Bizarro

Published at Transactions on Machine Learning Research (07/2024)

arXiv | GitHub | PDF | YouTube

DiConStruct: Causal Concept-based Explanations through Black-Box Distillation

Ricardo Moreira, Jacopo Bono, Mário Cardoso, Pedro Saleiro, Mário A. T. Figueiredo, Pedro Bizarro

Published at CLeaR 2024 - Conference on Causal Learning and Reasoning

arXiv

On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods

Kasun Amarasinghe, Kit T. Rodolfa, Sérgio Jesus, Valerie Chen, Vladimir Balayan, Pedro Saleiro, Pedro Bizarro, Ameet Talwalkar, Rayid Ghani

Published at AAAI-24 - Annual AAAI Conference on Artificial Intelligence

arXiv

Related Blog Posts

Page printed in 7 Oct 2024. Plase see https://research.feedzai.com/research_area/ai-research for the latest version.