Data+Shift: Supporting visual investigation of data distribution shifts by data scientists

João Palmeiro, Beatriz Malveiro, Rita Costa, David Polido, Ricardo Moreira, Pedro Bizarro

Published at EuroVis 2022 conference

Data Visualization


Machine learning on data streams is increasingly more present in multiple domains. However, there is often data distribution shift that can lead machine learning models to make incorrect decisions. While there are automatic methods to detect when drift is happening, human analysis, often by data scientists, is essential to diagnose the causes of the problem and adjust the system. We propose Data+Shift, a visual analytics tool to support data scientists in the task of investigating the underlying factors of shift in data features in the context of fraud detection. Design requirements were derived from interviews with data scientists. Data+Shift is integrated with JupyterLab and can be used alongside other data science tools. We validated our approach with a think-aloud experiment where a data scientist used the tool for a fraud detection use case.

PDF EuroVis ar5iv

Page printed in 21 Feb 2024. Plase see for the latest version.