feedzai

Responsible AI & The TRUST Framework

Move fast and FIX things:
Build AI that people TRUST

Pedro BizarroCo-Founder and
Chief Science Officer

3 Reasons

Why talk about TRUST in AI?

© Feedzai. This presentation is proprietary and confidential.

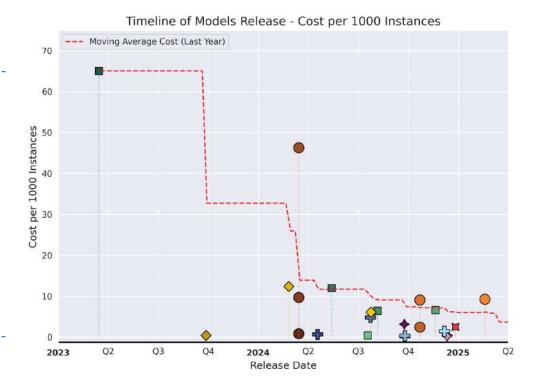
The Market wants Trustworthy Al

of US and UK consumers would not purchase from organizations they don't trust with their personal data.

BusinessWire, 75% of US & UK consumers are not comfortable purchasing from brands with poor data ethics

of American consumers are concerned about Al's ethical implications.

Markkula Center for Applied Ethics, Ethics in the Age of Al

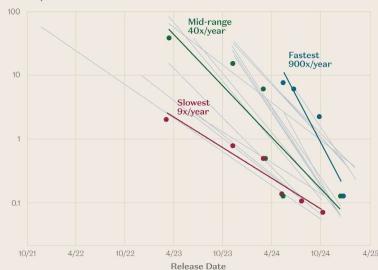

of Fortune 500 companies cite Al as a risk factor in their annual reports.

Accenture, Thrive with responsible AI: Embedding trust can unlock value

Al is commodity. TRUST is king.

150x cost reduction in 2 years [our own benchmarks]

Reason 2


Al is commodity. TRUST is king.

9x to 900x cost reduction per year [By Epoch Al]

The Cost of Doing Business

The price per token (for prompts and responses) for AI models at a given level of intelligence. The least "intelligent" models showed a roughly 9x decrease in cost per year, while the most capable ones dropped in price by roughly 900x per year.

Dollars per million tokens

- GPT-3.5 Turbo level or better on general knowledge
- GPT-4 level or better on Ph.D. level science questions
- GPT-40 level or better on Ph.D. level science questions
- Other benchmarks and performance levels

We can have TRUST and Performance

For a long time it was assumed that you had to choose between, e.g., either fairness or performance, but that is not the case anymore.

How did we get to the TRUST framework?

Client needs and client problems with competitors, incumbents, or in-house solutions

"It's all black-box. We don't know how it was trained or why the scores are generated." "Model is trained with old data, **degrades quickly**, it's legacy before it goes live."

"The model is much worse in some groups than in others, and we can't fix it."

"We delete data that could be useful; we are afraid of data leaks & social engineering."

"We create good features & models, but they don't perform the same in production."

Building Trust in High-Performance AI

Responsible Al enhances value: not a loss, but an investment.

Responsible Al safeguards users and protects brand reputation.

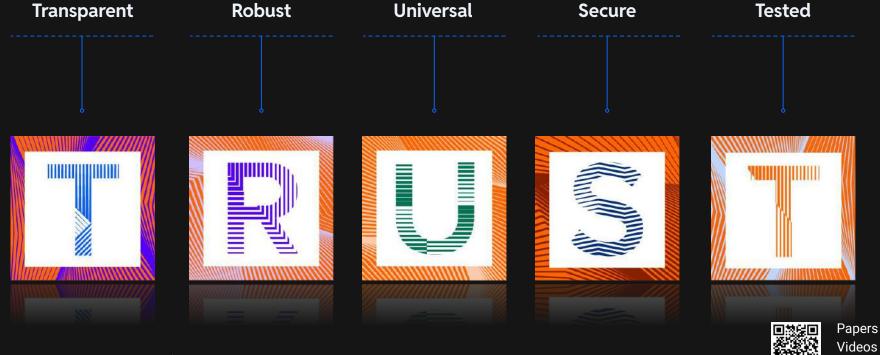
Trust in Al systems must be intentionally built from the start.

... is AI even necessary for your use case?

Genuine Necessity

Does the problem genuinely require an Al solution?

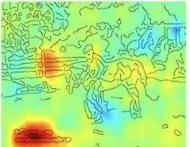
Could a different, or simpler, human-centered approach achieve the desired outcome responsibly?


Cost-Benefit Analysis

Are potential **benefits** of deploying Al clearly **greater than the risks**?

Are there dangers of over-automation and unintended consequences such as negative feedback loops?

Code


Transparent: Motivation

Helps reveal if you can trust the AI system

Input image

Red pixels are the most important for the model

Model **incorrectly** classified husky as a wolf **by hidden mistake**

Input image

Most important pixels for "wolf" misclassification

These models learned spurious correlations (photographer copyright, or the existence of snow)

Montavon, G., Samek, W., & Müller, K. R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing 2018 Ribeiro, M. T., Singh, S., & Guestrin, C. Why should I trust you?" Explaining the predictions of any classifier. ACM SIGKDD 2016

Transparent

Themes and Elements of Transparent AI

Explainable

Explanations

Reveal the key factors or attributes used by models to reach predictions.

A Human-Al Control

Allow certain users to interact, understand, and adjust AI decisions.

Al Presence

Indicate clearly when users are engaging with an AI system.

Governance

Model Governance

Document the model's type, architecture, hyperparameters, configuration, performance, and compute needs.

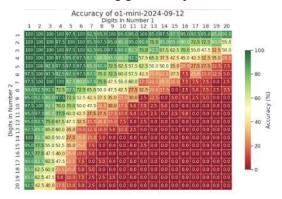
Data Provenance

Maintain clear records of data origin, selection, cleaning, transformation, and sampling.

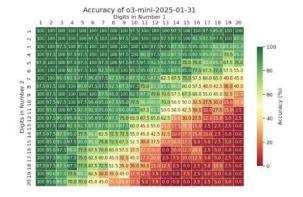
Process Governance

Provide policies and processes that guide development, deployment, and use of AI systems, including ethical, regulatory, and accountability considerations.

Robust: Motivation


Can we trust an AI system if it is not robust?

Example: Are OpenAI's models good at multiplying two numbers?


gpt-4o struggles beyond 4x4

o1-mini struggles beyond 7x7

o3-mini struggles beyond 10x10

Robust: Motivation

Can we trust an AI system if it is not robust?

How many R's are there in Ruberrberrry?

Attempt 1

Let's count them:

- 1. Ruberrberrry
- 2. Ruberrberrry
- 3. Ruberrberrry

There are a total of 5 "R"s in "Ruberrberrry".

Attempt 2

Let's count them:

1. Ruberrberrry

There are four instances of the letter "R".

Attempt 3

Let's count them:

1. Ruberrberrry

There are six "R"s in "Ruberrberrry".

Robust

Themes and Elements of Robust Al

Consistent

• Performance is stable, delivering accurate, reproducible and consistent results aligned with training and avoiding erratic behavior.

Adaptable

Tolerates changes in data and environmental conditions, handling unexpected or adversarial inputs with minimal disruption.

feedzai

Universal: Motivation

Possible high negative impact

POLICY

Al landlord screening tool will stop scoring low-income tenants after discrimination suit / Screening system SafeRent will also pay around \$2.3 million to Massachusetts residents with housing vouchers as part of a class action settlement.

The Verge, 11/20/2024

Upstart says it's improving AI models after report finds race approval disparities

Nat. Mortgage News, 09/26/2024

Revealed: bias found in AI system used to detect UK benefits fraud

Exclusive: Age, disability, marital status and nationality influence decisions to investigate claims, prompting fears of 'hurt first, fix later' approach

The Guardian, 12/06/2024

Social Media Tells You Who You Are. What if It's Totally Wrong?

Wired, 10/11/2024

BIASED TECHNOLOGY: THE AUTOMATED DISCRIMINATION OF FACIAL RECOGNITION

Universal: Motivation

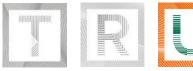
Complex problem with no magic solution

Q Sources of Bias...

... include data, cleaning, sampling, transformations, labels, training choices, humans-in-the-loop, post-processing, and more.

ntentions not enough

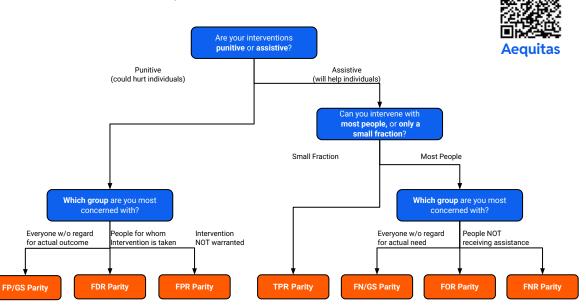
If you are not controlling for bias, it is **almost inevitable** that you will get a **biased Al system**.


Simple Solutions?

Eliminating protected attributes doesn't solve the problem. It makes it worse, because it prevents us from measuring bias.

Universal: Motivation

Must be educated and make difficult choices


Incompatibilities in Fairness

It is not possible to optimize for multiple fairness metrics at once in settings with different prevalences (e.g., disease rates in different age groups).

Need to **choose one fairness metric**, depending on the type of problem.

Use the Fairness Tree to help choose the most appropriate fairness metric.

Aequitas Fairness Tree

Universal

Themes and Elements of Universal Al

Fair

Reduce disparate treatment by not discriminating against groups based on protected attributes.

Q Regular Audits

Conduct regular audits to detect biases and validate bias mitigation strategies.

Inclusive

Inclusive Development

Involve diverse teams and stakeholder input to integrate multiple perspectives on fairness.

Oesigned for Everyone

Designed and accessible to everyone including people with disabilities.

feedzai

Secure: Motivation

Data leaks, System malfunctions

Generative Al Under Attack: Flowbreaking Exploits Trigger Data Leaks

Forbes, 11/26/2024

Sensitive DeepSeek data exposed to web, cyber firm says

Reuters, 01/30/2025

Study: 77% of Businesses Have Faced Al Security Breaches

Al systems are particularly vulnerable to security breaches, which is why shoring up your defenses is key in 2024.

Tech.co, 03/22/2024

Secure

Themes and Elements of Secure Al

Data Protection

Data Privacy

Handle sensitive data with strict confidentiality, complying with privacy regulations.

Data Consent

Provide clear processes for data owners to control how their information is used or deleted

Q Data Integrity

Ensure that data is authentic and correct. and that is not lost, nor tampered with.

System Protection

System Security

Run audits, penetration tests or vulnerability scans to guard against unauthorized access and to comply with industry or regulatory controls.

System Availability

System, services, data, and information are monitored and always available to authorized parties, ensuring correct and secure usage.

Tested: Motivation

Was the AI system tested for these use cases?

Pricey Al Pins are being returned quicker than they are sold: 'It just doesn't work'

New York Post, 08/09/2024

Al has high data center energy costs — but there are solutions

MIT Management, 01/07/2025

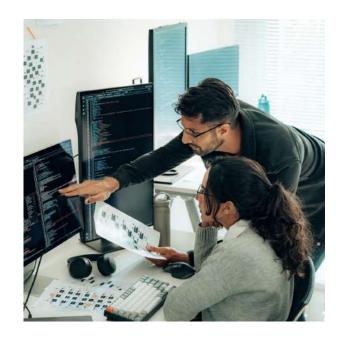
Lawyer Used ChatGPT In Court
—And Cited Fake Cases. A Judge
Is Considering Sanctions

Forbes, 01/08/2023

NEWS

Misinformation researcher admits ChatGPT added fake details to his court filing / Jeff Hancock says he used GPT-40 to help with citations – and didn't realize the tool 'hallucinated' new ones.

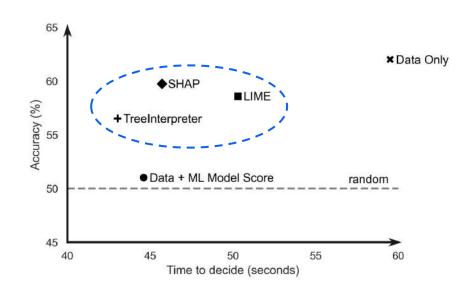
The Verge, 12/04/2024


Tested: Motivation

Real-world fraud detection explanations

Experiment: Test decision accuracy and response time of fraud analysts with progressively more information:

- 1. Transactional Data Alone
- Transactional Data + Al Model Score
- 3. Transactional Data + Al Model Score + Explanations


Tested: Motivation

Real-world fraud detection explanations

Key Finding: real-world fraud analysts, responded faster, but with lower accuracy when given algorithmic explanations compared to when given transactional data only.

The true value of product features is determined by real-world performance, not just theoretical benefits.

Tested

Themes and Elements of Tested Al

Silent bugs | Heisenbug | Data leakage | Data misses

User Aligned

Q Intended Uses

Monitor and test to confirm that system decisions align with user intended outcomes in cases the system was designed for.

Societal Benefit

Design with societal benefit in mind, considering a wide range of factors and anticipating the impact on all stakeholders

Complete Testing

Integration Testing

Test considering all system components, including models, settings, rules, lists, explanations, other systems, and user interactions.

Cost Efficiency

Minimize time, energy, and computational resources while considering the full lifecycle cost and prevent "cost leaks."

Continuous Testing

Continuously monitor and test the entire development lifecycle to prevent system or data issues to become Al issues in extreme cases.

Oversight and Assessment

Take advantage of independent evaluations to learn and confirm adherence to best practices.

The TRUST questionnaire

TRUST Framework v2025.09

Transparent

Questions to evaluate Transparent AI

- Are AI decisions explained clearly and understandably, including in generative models?
- Is Al presence clearly disclosed, especially when users interact with Al-generated content?
- Can users understand and, where appropriate, influence AI outcomes?
- Are there established policies for responsible AI development and deployment?
- Are model design choices and data processes fully documented and accessible?

(e.g., via a model cards, identifying the model purpose, intended users, data provenance, sampling, filtering, performance metrics, post-training decisions, known limitations, ethical considerations?)

Robust

Questions to evaluate Robust AI

- Does the system maintain reliable performance across varying conditions?
- Are results stable and predictable over time?
- Are stress tests and adversarial simulations performed before deployment?
- Is there a structured process for monitoring and correcting performance degradation?
- Can the system detect and respond to data drift, anomalies, or malicious activity, including prompt-based misuse?

Universal

Questions to evaluate Universal AI

- Are fairness goals clearly defined and embedded in model development?
- Are regular bias audits conducted?
- Are there documented strategies to mitigate unfair or harmful outcomes?
- Was the AI developed with diverse perspectives?
- Is the system accessible, inclusive, and equitable across demographics, languages, and abilities, including in Al-generated content?

Secure

Questions to evaluate Secure AI

- Are regular security audits and penetration tests conducted, including 3rd-party risks from integrations?
- Is the system continuously monitored for security threats, including prompt injection?
- Does the system comply with data privacy regulations (eg, GDPR, CCPA, industry-specific standards)?
- Do users have control over their data, including consent and deletion rights?
- Is sensitive data protected through encryption, access controls, and formal agreements with 3rd-party Al providers?

Tested

Questions to evaluate Tested AI

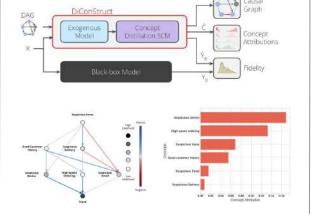
- Has the system undergone thorough user acceptance and integration testing, covering inputs, prompts, or edge cases?
- Is the AI deployed strictly within its validated scope, with safeguards to ensure system boundaries are upheld?
- Does testing confirm that the AI system enhances decision-making and delivers measurable value?
- Are shadow environments used for A/B testing and validation before full deployment?
- Are performance, efficiency, third-party integrations, and harmful content regularly benchmarked and monitored post-deployment?

TRUST work at Feedzai

Selected publications and projects

Transparent

Transparent AI @ Feedzai


TimeSHAP

Explaining Recurrent Deep Learning Models

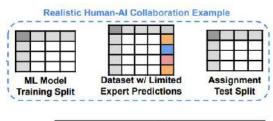
DiConStruct

Causal Explanations for Black-Box Models

Show Me What's Wrong!

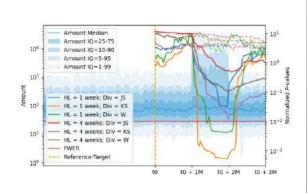
Charts and Text to Guide Data Analysis

Robust



Robust AI @ Feedzai

FIFAR


Learning to Defer in Fraud Detection with AI

Feature Monitoring

Lightweight Automation for Data Streams

Data+Shift

Visual Investigation of Data Drift

Robust

Robust AI @ Feedzai

A Good Example Supporting Robust Model Design

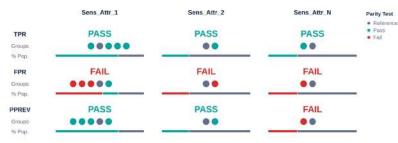
Challenge: Few high-quality, freely available tabular datasets exist for Al stress-testing, especially in sensitive areas such as fraud detection.

Solution: Feedzai developed the **open source Bank Account Fraud** (BAF) Tabular Dataset: a large, set of synthetic bank transactions reflecting natural behavior variations, seasonal shifts, and activity spikes.

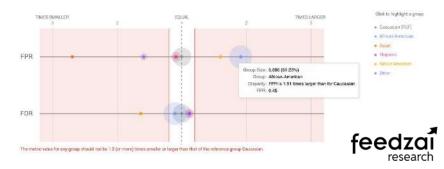
Impact: It helps researchers test fraud models in real-world conditions, producing more robust models.

Proof-point: Feedzai's models maintained consistent performance even during major disruptions, such as the early COVID-19 pandemic.

Universal


Universal AI @ Feedzai

Example of Bias Mitigation at Feedzai


To determine whether an AI system is unbiased, the first step is to conduct a **bias audit**.

Aequitas Flow (Feedzai's open-source bias audit tool contribution) calculates various fairness metrics across groups defined by protected attributes, identifying any performance gaps.

For a group to pass the parity test its disparity to the reference group cannot exceed the fairness threshold (1.25). An attribute passes the parity test for a given matric if all its groups pass the test.

Universal

Universal AI @ Feedzai

Example of Bias Mitigation at Feedzai

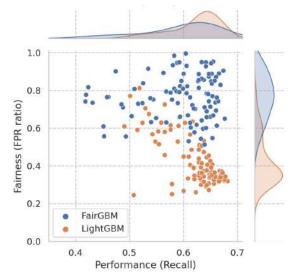
Several bias mitigation techniques are applied at Feedzai, including **pre-processing** techniques:

- Diverse sampling: Ensure all groups are well-represented in data.
- Balancing data: Oversample underrepresented groups or undersample overrepresented ones.
- Data augmentation & reweighting: Use techniques like Feedzai's Fair-OBNC to enhance fairness.

Learn more about Fair-OBNC

Universal

Universal AI @ Feedzai

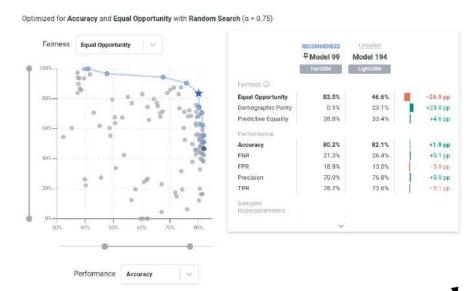

Example of Bias Mitigation at Feedzai

...through in-processing...

- Built-In Fairness: Use fairness-aware models, such as Feedzai's FairGBM, to inject fairness regularization in training, and strike a balance across accuracy and fairness.
- Fairness-aware Hyperparameter Optimization:
 optimize the fairness-accuracy trade-offs with
 model agnostic Feedzai's Fair-AutoML algorithms

Universal

Candidate Models Recommended Model


Universal AI @ Feedzai

Example of Bias Mitigation at Feedzai

...to post-processing...

 Fairness-Aware Tuning: Visualize and select the model that strikes a good balance between performance and fairness, e.g., using Feedzai's Fairband (Fintech Breakthrough Awards, 2021)

Secure

Secure AI @ Feedzai

Feedzai continuously runs audits, penetration tests, and vulnerability scans

594

industry standard controls implemented & monitored, for operational, technical & managerial scopes

+50

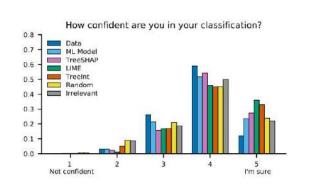
client **audits**, **penetration tests**, or **vulnerability scans** per year 3

yearly independent audits (PCI DSS, SOC 2 Type II and ISO 27001)

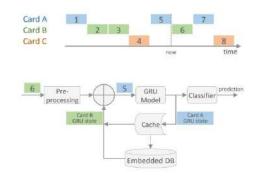
Tested



Tested AI @ Feedzai


Railgun

Streaming Windows Under Strict Requirements


Xplainzai

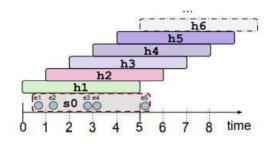
App-Grounded Evaluation of Explainers

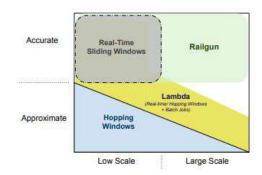
Interleaved RNNs

for Sequential Fraud Detection

Tested

Tested AI @ Feedzai


Real-world Scenario: Streaming Windows


Feedzai Railgun: High-throughput, real-time fraud detection with strict accuracy & latency requirements

Objective: Build a truly scalable, low-latency streaming system with strict accuracy that works in mission critical environments

Experiment: Benchmark the system using real data under extreme loads of up to 1M events/sec

Key Finding: Scores under stress at millisecond-level latencies (<250ms @ 99.9%) with **low memory use**, scaling nearly **linearly**.

feedzai

Move fast and FIX things:
Build AI that people TRUST

Thank you!

Papers Videos Code

