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Abstract

Distribution-free uncertainty quantification is an emerging field, which encompasses risk
control techniques in finite sample settings with minimal distributional assumptions, mak-
ing it suitable for high-stakes applications. In particular, high-probability risk control
methods, namely the learn then test (LTT) framework, use a calibration set to control
multiple risks with high confidence. However, these methods rely on the assumption that
the calibration and target distributions are identical, which can pose challenges, for exam-
ple, when controlling label-dependent risks under the absence of labeled target data. In
this work, we propose a novel extension of LTT that handles covariate shifts by directly
weighting calibration losses with importance weights. We validate our method on a syn-
thetic fraud detection task, aiming to control the false positive rate while minimizing false
negatives, and on an image classification task, to control the miscoverage of a set predictor
while minimizing the average set size. The results show that our approach consistently
yields less conservative risk control than existing baselines based on rejection sampling,
which results in overall lower false negative rates and smaller prediction sets.

Keywords: High-probability risk control, covariate shift, learn then test, distribution-free
uncertainty quantification, conformal prediction.

1. Introduction

Machine learning is increasingly used to automate high-risk and high-stakes decisions (e.g.,
in healthcare or finance). These decisions are often associated with specific risks representing
statistical measures of inaccuracy that must be controlled to meet safety, regulatory, quality,
or other standards. For example, fraud detection systems should be properly tuned to detect
fraudulent transactions while avoiding hindering legitimate economic activity.

Distribution-free uncertainty quantification is an emerging field that encompasses risk
control techniques in finite sample settings with minimal distributional assumptions (An-
gelopoulos and Bates, 2023). A cornerstone method of this family is conformal prediction
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(CP) (Shafer and Vovk, 2008), which calibrates a set predictor to control the miscover-
age probability. Letting X and Y denote the feature and label spaces, respectively, CP
uses a calibration set D = {(Xi, Yi)}ni=1 ⊂ X × Y to generate prediction sets C(Xn+1)
for a new test data point (Xn+1, Yn+1). Assuming only exchangeability of {(Xi, Yi)}n+1

i=1

(its joint distribution is permutation-invariant), CP provides a coverage/validity guarantee:
P(Yn+1 ∈ C(Xn+1)) ≥ 1 − α. However, CP does not guarantee the stronger conditional
validity property P(Yn+1 ∈ C(Xn+1) | Xn+1 = x) ≥ 1 − α, ∀x ∈ X . While this property
cannot be attained in general, relaxations such as group-conditional and class-conditional
coverage offer guarantees within specific feature-label subsets (Barber et al., 2021; Gibbs
et al., 2025) . Furthermore, calibration-set validity is always achievable, as concentration
bounds for the calibration-set conditional coverage level exist (Vovk, 2012).

Under the same exchangeability assumption, CP can be generalized to control other
risks beyond miscoverage, via the calibration of some (possibly multidimensional) param-
eter λ. If the risk can be expressed as the expectation of a lower-bounded loss function
L(·, ·;λ) : X × Y → R, which is coordinate-wise non-increasing with respect to λ for all
(x, y) ∈ X ×Y, conformal risk control (CRC) can be applied to compute λ̂ that guarantees
E[L(Xn+1, Yn+1; λ̂)] ≤ α (Angelopoulos et al., 2024).

The probability and expectation in the aforementioned guarantees are taken over both
the new test point and the calibration set. To rigorously control the risk, the calibration
procedure must be applied each time a new test point is introduced. If calibration is only
done periodically, there may be time frames where the risk exceeds the desired threshold
due to an anomalous calibration sample, which could be problematic in scenarios where risk
control should be as strict as possible. An alternative approach is to perform high-probability
risk control (HPRC) (Angelopoulos et al., 2025; Bates et al., 2021), which bounds the
probability of risk violations occurring due to a “bad” calibration set below some threshold
δ. Methods for this purpose operate under slightly stronger distributional assumptions,
namely, that the calibration set is i.i.d. according to the target distribution.

When models are deployed over data from a target distribution that may differ from
that of the training data (the source distribution), a significant performance degradation
may occur (Kouw and Loog, 2019). This is the case, e.g., when a fraud detection system
is applied to transactions from a new geographical setting, or if an image classifier trained
on a particular type of image (e.g., photographs) is used on other kinds of image (e.g.,
drawings). Furthermore, the risk control techniques mentioned above cannot be applied
over source calibration data, as distribution shifts violate important underlying assumptions
(e.g., exchangeability and i.i.d.). While labeled target data are often unavailable, due to
slow or costly labeling processes, unlabeled target data could still be used for risk control.

In this work, we introduce a novel adaptation of high-probability risk control meth-
ods, specifically of the learn then test (LTT) approach (Angelopoulos et al., 2025), that
addresses covariate shift between the source and target distributions in the presence of un-
labeled target data. Making use of recent advancements in hypothesis testing, we prove
how calibration losses can be weighted by importance weights to achieve risk control. We
experimentally validate our approach in two settings. The first is a synthetic fraud detec-
tion scenario in which a model trained on a source distribution is calibrated to control the
false positive rate (FPR) on a target distribution while minimizing the false negative rate
(FNR). The second setting involves an image classification task, where a model trained on
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a source distribution is deployed on a target domain representing a specific data subpopu-
lation. Here, the covariate shift assumption may not hold, and the goal is to calibrate a set
predictor to control the miscoverage probability while minimizing the average set size, as
considered by Park et al. (2022). Our results show that our approach is less conservative
than the existing covariate shift-adapted HPRC baseline in both cases (i.e., smaller FNR
and average set size), while achieving the desired risk control in the synthetic setting and
closing the risk gap in the second scenario.

Related Work. This work is part of a broader research avenue aimed at adapting risk
control methods to handle distribution shifts. Notably, Tibshirani et al. (2019) proposed a
weighting scheme for quantile calculation in CP that uses importance weights to preserve the
original coverage guarantee under covariate shift. Barber et al. (2023) examined the impact
of both data-independent and dependent weighting schemes on the coverage gap, provid-
ing important theoretical guidelines for designing such schemes to bridge the gap under
arbitrary violations of the exchangeability assumption. This approach has been extended
to conformal risk control by Farinhas et al. (2024). In the context of high-probability risk
control, Park et al. (2022) introduced rejection sampling to align the calibration and target
distributions under covariate shift while aiming specifically for the control of the miscover-
age risk. This approach was later extended to other use cases by Zollo et al. (2024); although
different from our method, it will be fully explained in later sections for completeness.

2. Background: High-Probability Risk Control

In this section, we present a review of some foundational principles of HPRC. Let X and
Y denote the feature and label spaces, respectively, and let P be a probability measure on
a suitable measurable space (X × Y,F). For convenience, we will also use the notation
P to refer to the corresponding distribution. Furthermore, consider a calibration set D =

{(Xi, Yi)}ni=1 ⊂ X × Y, where (Xi, Yi)
i.i.d.∼ P, ∀i ∈ {1, . . . , n}. Let L(·, ·;λ) : X × Y → R

be a measurable loss parameterized by λ, and define RP(λ) = E(X,Y )∼P[L(X,Y ;λ)] as the
risk (expected loss) under P. For conciseness, we include the subscript P in the expectation
defining the risk only when the underlying probability measure is not clear from the context.

A core HPRC approach is learn then test (LTT) (Angelopoulos et al., 2025). Given a
predefined subset Λ of the parameter space, LTT uses a calibration set to generate a subset
Λ̂ ⊆ Λ such that the risk is uniformly controlled over all its elements, i.e.,

P
(
sup
λ∈Λ̂

R(λ) ≤ α
)
≥ 1− δ,

for some confidence level δ ∈ (0, 1), where the randomness is over the calibration set. Once
Λ̂ is determined, a single parameter can be selected based on additional optimality criteria.
For instance, in general detection (binary classification) systems, one might control the false
positive rate and select the parameter in Λ̂ that minimizes the false negative rate (or vice
versa). Moreover, this approach does not require the risk or loss to be monotonic with
respect to λ, which may even be any general mathematical object.

Hypothesis tests serve as the main building blocks of this procedure; specifically, for
each value of λ ∈ Λ, the following null hypothesis is considered:

H0(λ, α) : R(λ) > α.
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If a rejection rule over the calibration set bounds the probability of a false rejection
below 1− δ, then rejecting the null hypothesis based on it provides 1− δ confidence that λ
controls the risk below α. Such procedures can be designed using valid p-values.

Definition 1 (p-value) (Angelopoulos et al., 2025) Let H0 be a null hypothesis. A statistic
p is said to be a valid p-value for H0 if it is super-uniform under H0, i.e.,

PH0

(
p ≤ δ

)
≤ δ, ∀δ ∈ [0, 1].

Thus, rejecting H0 if p ≤ δ ensures that a false rejection occurs with probability at most δ.

The following theorem establishes how to generate p-values from concentration inequal-
ities (such as Hoeffding’s inequality).

Theorem 2 (Bates et al., 2021) Let g(·, ·) : R2 → R be a function satisfying the condition

P
(
R̂(λ) ≤ t

)
≤ g
(
t, R(λ)

)
, ∀t ∈ R, (1)

where R̂(λ) = 1
n

∑n
i=1 L(Xi, Yi;λ) represents the empirical risk over the calibration set and

E[L(Xi, Yi;λ)] = R(λ), ∀i ∈ {1, . . . , n}. Then, g
(
R̂(λ), α

)
is a valid p-value for the null

hypothesis H0(λ, α) : R(λ) > α.

In some cases, the distribution of the empirical risk can be exactly specified, making it
possible to replace potentially loose non-parametric bounds with an exact expression on the
r.h.s. of Equation (1), leading to more powerful p-values. For instance, if the loss function
is almost surely supported on {0, 1}, then nR̂(λ) follows a binomial distribution. The 0-1
loss scenario is ubiquitous, arising when controlling the miscoverage or the FPR.

Theorem 3 (Clopper-Pearson p-value) (Clopper and Pearson, 1934; Park et al., 2022)
Let L(·, ·;λ) : X × Y → {0, 1} be a measurable loss function parametrized by λ. Let
R̂(λ) = 1

n

∑n
i=1 L(Xi, Yi;λ) be the empirical risk computed over an i.i.d. calibration set

such that E[L(Xi, Yi;λ)] = R(λ), ∀i ∈ {1, . . . , n}. Then, the statistic

p(λ, α) = FBin(n,α)

(
nR̂(λ)

)
,

where FBin(n,α) is the cumulative distribution function of the binomial distribution with n
trials and success probability α, is a valid p-value for H0(λ, α) : R(λ) > α.

Obtaining Λ̂ requires ensuring that all its elements control the risk below α with 1− δ
confidence, rather than being (1− δ)-confident for each λ ∈ Λ̂. In hypothesis testing termi-
nology, this is referred to as controlling the family-wise error rate (FWER) (Angelopoulos
et al., 2025) at level δ, which is defined as

FWER
(
Λ̂
)
= P

(
∃λ ∈ Λ̂ : H0(λ, α) holds

)
.

Such approaches are called FWER-controlling and consist of strategies to aggregate p-values
generated by testing the set of hypotheses {H0(λ, α) : λ ∈ Λ}. If Λ is discrete, one possible
approach is fixed-sequence testing (FST) (Angelopoulos et al., 2025). In FST, hypotheses
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are tested in a predefined order, and all corresponding values of λ in Λ̂ are gathered until
the first non-rejection at level δ occurs. The risk-controlling subset is thus defined by
Λ̂ = {λ′

i}
k∗−1
i=1 , where

k∗ = min{k : p(λ′
i, α) ≤ δ, ∀i < k},

for a predefined ordering (λ′
1, ...λ

′
|Λ|) of Λ. For this method to be useful, safer values for λ

should be tested first. When the monotonicity relationship between λ and R(λ) is unclear,
split fixed-sequence testing (SFST) (Angelopoulos et al., 2025; Laufer-Goldshtein et al.,
2023) can be used. In this approach, the calibration set is divided into two disjoint subsets:
one for defining an ordering of Λ and another for applying FST.

LTT can also be extended to simultaneously control multiple risks by considering a p-
value for each individual risk and taking the maximum of all p-values. Additionally, when
p-values are almost surely monotonically non-increasing or non-decreasing in λ for a fixed
calibration set D, it is possible to consider an interval [λ−, λ+] as Λ. In this case, the
iterative nature of FST/SFST can be avoided by directly computing the risk-controlling
half-subset Λ̂ using any standard root-finding algorithm (Bates et al., 2021).

3. High-Probability Risk Control under Covariate Shift

Consider the problem of asserting risk control over a target distribution Ptarget, from which
only an unlabeled sample T = {Xi}nt

i=1 is available. Standard risk control methods generally
cannot be applied in this setting if the loss function depends on the label Y , as it usually
does. If we possess a labeled sample S = {(Xi, Yi)}ns

i=1 drawn from a possibly different
source distribution Psource, we should ask if the application of these methods on S yields
the desired statistical confidence guarantees.

To test H0(λ, α) : R(λ) > α at a significance level δ, a general strategy is to use p-values,
which require that E[L(Xi, Yi;λ)] = R(λ) for any data point (Xi, Yi) in the calibration set.
Therefore, without further assumptions, we are only guaranteed to control the source risk

RPsource(λ) = E(X,Y )∼Psource
[L(X,Y ;λ)].

For the risk to be controlled over the target distribution, the relation RPtarget(λ) ≤ RPsource(λ)
should hold, which is a strong assumption that may not be verified in general.

3.1. The Covariate Shift Assumption and Existing HPRC Methods

Fortunately, it is possible to make use of the source dataset S under some further as-
sumptions on Psource and Ptarget. In particular, the covariate shift assumption renders this
problem tractable by assuming equal feature-conditional probability measures.

Definition 4 (Covariate shift) (Quiñoreo-Candela et al., 2009) Two probability mea-
sures P and Q defined on some measurable space (X ×Y,F) are said to differ by a covariate
shift if the corresponding feature-conditional probability measures coincide, i.e.,

dP(y | x) = dQ(y | x), ∀(x, y) ∈ X × Y.

Furthermore, under mild regularity conditions, we can define the notion of importance
weight between two probability measures (also known as the Radon-Nikodym derivative).
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Definition 5 (Importance weight) (Resnick, 1999) Let P and Q be probability measures
defined on a measurable space (X ×Y,F) such that Q is absolutely continuous with respect
to P (Q ≪ P), i.e.,

P(A) = 0 ⇒ Q(A) = 0, ∀A ∈ F .

Define the importance weight function as

w(x, y) =
dQ
dP

(x, y), ∀(x, y) ∈ supp(P).

Then, it holds that

Q(A) =

∫
A
w(x, y) dP(x, y), ∀A ∈ F .

Under the covariate shift assumption, the importance weight function depends only on
the marginal distributions over X (Yu and Szepesvári, 2012),

w(x, y) =
dPtarget

dPsource
(x, y) =

dPtarget,X

dPsource,X
(x) := w(x),

where Psource,X and Ptarget,X denote the induced source and target marginals over X . More-
over, the importance weight can be estimated only from unlabeled source target data several
well-established methods (You et al., 2019; Sugiyama et al., 2007; Huang et al., 2006).

To correct covariate shift between the source and target distributions, Park et al. (2022)
propose aligning the calibration set with the target distribution via rejection sampling
(Robert and Casella, 2004), a classical technique to generate samples from a target dis-
tribution using another (so-called proposal) distribution. The definition and correctness of
this procedure are established by the following theorem.

Theorem 6 (Rejection Sampling) (Robert and Casella, 2004) Let P and Q be the target
and proposal, respectively, probability measures defined on a measurable space (X × Y,F)
such that Q ≪ P. Define w = dQ

dP as the corresponding importance weight function, assumed
to be bounded above by some constant B < ∞. Let (X,Y ) ∼ P, and define (X ′, Y ′) as
the pair (X,Y ) accepted under the event U ≤ w(X,Y )/B, where U ∼ Uniform[0, 1] is
independent of (X,Y ); that is, (X ′, Y ′) = (X,Y ) | w(X)/B ≤ U . Then, (X ′, Y ′) ∼ Q.

Given an importance weight function w : X → R and an upper boundB ≥ sup{w(x), x ∈
X}, both estimated from unlabeled source and target data, rejection sampling can be ap-
plied to the labeled source set S to produce a new i.i.d. sample S ′ from Ptarget, assuming
these estimates are accurate. This allows the application of standard risk control procedures
as if S ′ was directly drawn from the target distribution.

Applying rejection sampling as described, the expected size of S ′ (the set of non-rejected
samples) is inversely proportional to B, since

E

[
ns∑
i=1

1

{
Ui ≤

w(Xi)

B

}]
=

ns

B
,

where 1{·} denotes the indicator function. If B is large, the retained sample may become
too small, yielding overly conservative p-values that fail to identify useful risk-controlling
values of λ. This can degrade performance with respect to complementary metrics; for
instance, a low FPR may come at the cost of a higher false negative rate and vice versa.
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3.2. HPRC under Covariate Shift via Importance Weighting

In this section, we propose a different approach to HPRC under covariate shift, addressing
the limitations of rejection sampling. We discuss a new method to control risks over the
joint distribution (Section 3.2.1) and extend it to conditional risks (Section 3.2.2).

3.2.1. Controlling Risks over the Joint Feature/Label Distribution

We first propose an alternative way to deal with covariate shift when controlling risks that
are the expectation of a loss L(X,Y ;λ) over the joint feature and label distribution induced
by Ptarget (e.g., miscoverage). In such cases, these can be written as expectations of the
importance-weighted loss w(X)L(X,Y ;λ) over Psource (Quiñoreo-Candela et al., 2009):

R(λ) = E(X,Y )∼Ptarget
[L(X,Y ;λ)] = E(X,Y )∼Psource

[w(X)L(X,Y ;λ)]. (2)

In this way, we can perform risk control using the entirety of the labeled source data
by considering the sample of importance-weighted losses {w(Xi)L(Xi, Yi;λ)}ns

i=1, where
(Xi, Yi) ∼ Psource, ∀i ∈ [ns]. We formalize this approach in the next theorem.

Theorem 7 Let Psource and Ptarget be probability measures on (X×Y,F) such that Ptarget ≪
Psource, and assume they differ by a covariate shift. Let w =

dPtarget

dPsource
be the corresponding

importance weight function, and let L(·, ·;λ) : X ×Y → R be a measurable loss parametrized
by λ. Then, any p-value for H′

0(λ, α) : EPsource [w(X)L(X,Y ;λ)] > α is also a p-value for
H0(λ, α) : EPtarget [L(X,Y ;λ)] > α.

Proof By Equation (2), the conditions in H0(λ, α) and H′
0(λ, α) are equivalent. Thus, for

any valid p-value p(λ, α) for H′
0(λ, α), we have PH0(λ,α)(p(λ, α) ≤ δ) = PH′

0(λ,α)
(p(λ, α) ≤

δ) ≤ δ, ∀δ ∈ [0, 1].

It is important to recognize that, while this method retains all the source data, the
distribution of the weighted losses may be more challenging to handle. For instance, the
introduction of weights can destroy desirable properties of the original loss that allow the
use of very tight p-values—e.g., it may break the 0–1 structure and significantly broaden
the range of possible values. Nevertheless, recent advances in testing by betting provide
highly variance-adaptive p-values that work very well in practice, such as the Waudby-
Smith–Ramdas (WSR) p-value (Waudby-Smith and Ramdas, 2024).

Theorem 8 (WSR p-value) (Bates et al., 2021; Waudby-Smith and Ramdas, 2024) Let
L(·, ·;λ) : X × Y → [0, 1] be a measurable loss parametrized by λ and let D = {(Xi, Yi)}ni=1

be a calibration set such that

E[L(Xi, Yi;λ)] = E[L(Xi, Yi;λ) | L(Xi−1, Yi−1;λ), . . . , L(X1, Y1;λ)] = R(λ), ∀i ∈ {1, . . . , n}.

Define the following statistics:

µ̂i(λ) =
1/2 +

∑i
j=1 L(Xj , Yj ;λ)

1 + i
, σ̂2

i (λ) =
1/4 +

∑i
j=1(L(Xj , Yj ;λ)− µ̂j(λ))

2

1 + i
,

νi(λ) = min

{
1,

√
2 log(1/δ)

n σ̂2
i−1(λ)

}
.
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Furthermore, define the capital process {Ki(λ, α)}ni=1 as

Ki(λ, α) =

i∏
j=1

(
1− νj(λ)(L(Xj , Yj ;λ)− α)

)
.

Then, the statistic

p(λ, α) =

(
max

i∈{1,...,n}
Ki(λ, α)

)−1

is a p-value for H0(λ, α) : R(λ) > α.

Although this p-value assumes that the loss lies between 0 and 1, it can be readily
extended to our setting. If L is supported on [l, u], then the importance-weighted loss wL
is supported on [l′, u′], where l′ = min(0, Bl) and u′ = max(0, Bu). It is then sufficient to
test the equivalent hypothesis

H0(λ, α) :
R(λ)− l′

u′ − l′
>

α− l′

u′ − l′
,

using the rescaled importance-weighted losses
{

w(Xi)L(Xi,Yi;λ)−l′

u′−l′

}ns

i=1
.

Due to the sequential nature of the procedure, the order of the calibration data can
affect the outcome when the source dataset is a mixture of subsources (e.g., different types
of images). If such subsources are processed in bulk and the early part of the capital
process is computed over samples from a subsource for which the risk is controlled, the
capital process may surpass δ−1 prematurely, leading to a rejection even though the risk is
not controlled over the entire source distribution. To solve this, the data can be randomized

B times, yielding B capital processes
{
{K(b)

i (λ, α)}ni=1

}B
b=1

, which can be averaged into a

new process Ki(λ, α) := B−1
∑B

b=1K
(b)
i (λ, α) (Waudby-Smith and Ramdas, 2024).

3.2.2. Controlling Conditional Risks

Many risks are defined over distributions other than the joint feature and label distribution.
For example, the FPR of a binary classifier f , FPR = P(f(X) = 1 | Y = 0) = E[1{f(X) =
1} | Y = 0], is evaluated over the conditional distribution ofX given Y = 0. Under covariate
shift between Psource and Ptarget, it follows that

dPtarget, X | y(x | y) = w(x)
dPsource, Y

dPtarget, Y
(y) dPsource, X | y(x | y),

showing that covariate shift does not hold if the source and target class priors are different.
In general, this reweighting procedure does not directly apply to risks defined over distribu-
tions other than the joint. However, it can be adapted for a broad class of risks, as shown
in the following theorem.

Theorem 9 Consider the null hypothesis H0(λ, α) : EPtarget [L(X,Y ;λ) | (X,Y ) ∈ A(λ)] >
α, where A(λ) ∈ X×Y is a non-zero probability set and L(·, ·;λ) : X×Y → R is a measurable
loss parametrized by λ. Then, any p-value for H′

0(λ, α) : EPsource [L
′(X,Y ;λ)] > α is also a

p-value for H0(λ, α), where

L′(X,Y ;λ) = w(X)
(
L(X,Y ;λ)1{(X,Y ) ∈ A(λ)}+ α1{(X,Y ) /∈ A(λ)}

)
.
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Proof Developing the condition in H0(λ, α), we have:

EPtarget [L(X,Y ;λ) | (X,Y ) ∈ A(λ)] > α

⇔ EPtarget [L(X,Y ;λ)1{(X,Y ) ∈ A(λ)}] > αPtarget((X,Y ) ∈ A(λ))

⇔ EPtarget [L(X,Y ;λ)1{(X,Y ) ∈ A(λ)}] > α(1− Ptarget((X,Y ) /∈ A(λ)))

⇔ EPtarget [L(X,Y ;λ)1{(X,Y ) ∈ A(λ)}] + αPtarget((X,Y ) /∈ A(λ)) > α

⇔ EPtarget [L(X,Y ;λ)1{(X,Y ) ∈ A(λ)}+ α1{(X,Y ) /∈ A(λ)}] > α.

The result then follows from applying Theorem 7 to the loss L(X,Y ;λ)1{(X,Y ) ∈
A(λ)}+ α1{(X,Y ) /∈ A(λ)}.

This result shows that any conditional risk can be reformulated as a risk over the joint
feature-label distribution for the purpose of hypothesis testing. In the setting of a binary
classifier f(·;λ) : X → {0, 1}, many common classification risks fall within this family. For
instance, the FPR corresponds to taking L(X,Y ;λ) = 1{f(X;λ) = 1} and A(λ) = {(x, y) ∈
X ×Y : y = 0}. Similarly, for the false discovery rate, we have L(X,Y ;λ) = 1{Y = 0} and
A(λ) = {(x, y) ∈ X × Y : f(x;λ) = 1}.

4. Results and Discussion

4.1. Experimental Setup

4.1.1. Tasks and Datasets

We evaluate our method on two tasks. The first consists in controlling the FPR of a
transaction fraud detection model below α = 0.05 with confidence (1 − δ) = 0.95. The
model has the form f(x;λ) = 1{s(x) > λ}, where s : X → [0, 1] is a trained score function
that captures the likelihood of a transaction being fraudulent. We apply fixed sequence
testing (FST) over a set Λ = {s(i/1000)}1000i=1 , where s(q) denotes the sample q-quantile of the
score distribution on source data. We test Λ in decreasing order and choose the smallest
risk-controlling λ to minimize the FNR.

In this first task, we simulate a situation in which new unlabeled transaction data
becomes available and previously collected labeled data are used to ensure risk control.
For that purpose, we partition the Bank Account Fraud (BAF) dataset (Jesus et al., 2022)
into three domains based on the credit risk of the client performing the transaction (low,
medium, and high). Each domain is treated as the target in turn, with the remaining two
combined to form the source. All domains are designed to differ solely in terms of covariate
shift. Details on the partitioning procedure are provided in Appendix A. Furthermore, we
use 70% of each domain’s data for model training and the remaining 30% for risk control.
We use LightGBM classifiers (Ke et al., 2017), trained with 5-fold cross-validation, and
tune hyperparameters to maximize the AUROC using Optuna’s implementation of TPE
(Watanabe, 2023; Akiba et al., 2019). The hyperparameter grid is specified in Appendix F.

In the second task, we control the miscoverage of an image set predictor of the form
f(x;λ) = {y ∈ Y : s(x, y) > λ} below 0.10 with confidence 0.95, where s : X × Y → [0, 1]
is a trained score function such that s(x, y) estimates the posterior probability of class y
for an image x. We perform FST over Λ = {s∗(i/1000)}

1000
i=1 , where s∗(q) denotes the empirical
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q-quantile of the true-class scores on the source data. Here, Λ is tested in increasing order
and the largest risk-controlling λ ∈ Λ is selected to minimize the average set size.

We use the DomainNet dataset (Peng et al., 2019), which consists of 6 domains: clipart,
real, infograph, painting, sketch, and quickdraw. We consider each domain as target
and all domains as sources, simulating a setting where a model is trained on broad data
but is deployed on some (potentially unknown) subpopulation. We use the same ResNet
model as Park et al. (2022) and use the original test and validation splits for risk control.

4.1.2. Estimation of Importance Weights

To estimate importance weights, we apply kernel mean matching (KMM), which minimizes
the maximum mean discrepancy (MMD) between empirical kernel mean embeddings of the
target distribution and the reweighted source distribution (Quiñoreo-Candela et al., 2009).
Given a reproducing kernel Hilbert space (RKHS) H associated with a universal kernel k,
KMM estimates the weights at the source datapoints {w(xj) : xj ∈ S} that minimize∥∥∥∥ 1

nt

∑
xi∈T

k(xi, ·)−
1

ns

∑
xj∈S

w(xj) k(xj , ·)
∥∥∥∥2
H

subject to w(xj) ≥ 0, ∀xj ∈ S, and | 1
ns

∑
xj∈S w(xj)−1| ≤ ϵ. Following Huang et al. (2006),

we set ϵ = 1− 1/
√
ns.

We consider a Gaussian kernel k(x, x′) = exp(−∥x− x′∥2/σ2), using one-hot encodings
for categorical variables when computing distances. We set σ to the median of pairwise
distances between all the points in the source and target datasets, following Sugiyama et al.
(2009). Additionally, the maximum admissible importance weight is set at 10,000. To
accelerate this procedure, we use the very fast KMM (VFKMM) algorithm proposed by
Chandra et al. (2016), averaging importance weights computed across bootstrap samples
of size 1000 from the source dataset, with the number of bootstrap samples set to ensure
that each point is sampled at least once with probability 0.9999. Moreover, we consider the
maximum estimated importance weight as an estimate for the upper bound B.

The second image classification task poses challenges due to the high dimensionality of
the input, affecting the stability of importance weight estimates and increasing runtime.
These challenges can be attenuated by considering a lower-dimensional feature transforma-
tion h : Rn → Rd with d ≪ n, such that X and Y are conditionally independent given
h(X). One such transformation is h(x) = (P(Y = y1 | X = x), . . . ,P(Y = yd | X = x)),
where Y = {y1, . . . , yd} is the label space (Stojanov et al., 2019). This motivates our choice
to use the model’s predicted class scores as features for importance weight computation.

Park et al. (2022) propose a method to account for uncertainty in the estimation of
importance weights. In short, the observations are binned into K equal-mass bins {Bi}Ki=1

according to an estimate of the importance weights. Then, a δ-upper confidence bound

w+(x) =
P+
target(X ∈ B(x)) + E(

P−
source(X ∈ B(x))− E

)
+

can be obtained for w(x), where B(x) is the bin containing x, P+ and P− denote δ/2
Clopper-Pearson upper and lower-confidence bounds, respectively, and E is a predefined

10
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smoothness constant to account for the histogram approximation. However, there are no
theoretical guidelines for choosing K and E. Thus, we opt for more established procedures
and proceed under the assumption that the estimates are accurate.

4.1.3. Baselines and Evaluation Procedure

We compare our proposed importance-weighted LTT method based on the WSR p-value
(Waudby-Smith and Ramdas, 2024) (LTT-IW) against two baselines: LTT with rejection
sampling and the Clopper-Pearson p-value (Clopper and Pearson, 1934) (LTT-RS), and LTT
without importance weights (LTT) (i.e., directly controlling the source risk). Variations of
our method for different p-values can be found in Appendix B.

At the beginning of the procedure, we estimate the importance weights using the source
and target splits allocated for risk control. We then run 1,000 iterations of LTT, each time
over a different subsample of source data drawn without replacement. In the first task,
we use the entire target dataset to evaluate the resulting target risk, while in the second
baseline (where the target domain is contained in the source domain), we only use the part
that was not sampled. To evaluate sample efficiency, we vary the source sample size, but
always use the full source and target datasets to get the most accurate importance weight
estimates. Finally, we estimate (1 − δ)-quantiles of the risk estimates computed over all
iterations to assess if risk control is achieved. To evaluate how conservative the methods
are, we also report the mean FNR and average set size obtained over all runs. In addition,
Appendix C contains a brief analysis of the computational cost of the proposed method.

4.2. Results

Figure 1 reports the 0.95-quantile of the FPR for different values of the source sample sizeN .
Ignoring covariate shift (LTT) can either make risk control overly conservative (for target
domains low and medium), or outright invalid, as is the case of target domain high, where
the risk is controlled at twice the intended level. Both weighted variants (LTT-IW and
LTT-RS) control the FPR in nearly all cases, with the exception being in medium, where a
residual risk gap of ≈ 0.0025 likely stems from errors in the estimated importance weights.
Figure 2 further indicates that LTT-IW consistently achieves a lower average FNR than
LTT-RS, showing that our method of direct importance weighting yields a less conservative
and more stable risk control than rejection sampling in this case.

We perform a similar analysis for the second task. Figure 3 shows that the risk is only
controlled when real or quickdraw serve as the target, indicating that the covariate-shift
assumption does not hold. In fact, we are actually controlling the risk over a distribu-
tion Paligned that matches the target feature marginal, but maintains the source feature-
conditional distribution of the labels. With high probability, the true target risk can exceed
α by at most the total-variation distance dTV

(
Ptarget,Paligned

)
(Angelopoulos et al., 2024).

Nevertheless, we see that using importance weights (LTT-IW and LTT-RS) can bring
the effective risk level closer to α: for the clipart, infograph, painting, and sketch

cases, it bridges the risk gap, while making the procedure less conservative for quickdraw.
In the real domain, however, the effect is minimal for LTT-IW, and LTT-RS deviates
further from the target level. While both methods perform comparably on miscoverage,
our method (LTT-IW) yields smaller average set sizes compared to LTT-RS (Figure 4). We
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Figure 1: 0.95 FPR quantiles (vertical axis) vs. source sample size (horizontal axis) for
each target domain in BAF (low, medium and high panels). Ignoring covariate shift (LTT)
results in overly conservative or overly invalid risk control.
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Figure 2: Average FNR (vertical axis) vs. source sample size (horizontal axis) for each
target domain in BAF (low, medium and high panels). LTT-IW consistently results in
lower FNR compared to LTT-RS.

notice that, on real-world data where the covariate shift assumption may be violated, higher
sample efficiency makes the procedure less conservative, but may exacerbate risk violations.

5. Conclusion and Future Work

In this work, we showed that using importance-weighted losses is a viable approach to tackle
high-probability risk control under covariate shift. The experimental results show that our
method outperforms the rejection-sampling baseline in terms of auxiliary performance mea-
sures. Although caveats remain, as these approaches rely on the covariate-shift assumption,
the results show that the use of importance weights can narrow the risk gap, bringing the
risk closer to the prescribed level even if the covariate-shift assumption is violated.

While the results presented show LTT-IW to be less conservative than LTT-RS in gen-
eral, there may be individual cases where the opposite happens. An interesting research
avenue consists of automatically selecting the better method. Further work could also ex-
tend the LTT-IW framework to support other risk functionals and develop strategies to
increase p-value power (e.g., via variance-reduction techniques). Appendix D discusses
some limitations of one such approach.

Both methods herein considered assume accurate importance weight estimates. The
upper-confidence bounds provided by Park et al. (2022) address this uncertainty but as-
sume the knowledge of hyperparameters for which there are no tuning guidelines, as well as
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Figure 3: 0.90 miscoverage quantiles (vertical axis) vs. source sample size (horizontal axis)
for each target domain in DomainNet. The use of HPRC methods bridges the risk gap for
clipart, infograph, painting and sketch.
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Figure 4: Mean average set size (vertical axis) vs. source sample size (horizontal axis)
for each target domain in DomainNet. LTT-IW achieves smaller average set sizes than
LTT-RS, but with increased risk violations due to concept shift.

Lipschitz-continuous densities, which may not be appropriate for dealing with mixed cate-
gorical and numerical feature spaces. Future work could relax this assumption or develop
alternatives to account for uncertainty. Furthermore, these methods assume a known upper
bound B on the importance weights. Appendix E presents a sensitivity analysis on B,
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along with a discussion of alternative self-normalized approaches. The design of bound-free
methods is also a promising direction for future research.
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Appendix A. Dataset Generation

In this appendix, we provide details on the generation of domains from the BAF dataset.
During preprocessing, missing numerical values are imputed with the mean and standardized
using z-score normalization, while categorical features are imputed with the mode. To
eliminate any temporal drift, the month feature is excluded.

To generate the disjoint covariate-shifted datasets, we employ a strategy similar to that
of Huang et al. (2006). Let c(x) be the value of the feature credit risk score of sample
x, and let qlow, qmed, qhigh be the empirical 0.25, 0.50, 0.75 quantiles of c(x), respectively.
Sampling proceeds in stages: each observation is included in the low-risk domain with

probability plow(x) = exp
(
− (c(x)−qlow)

2

2σ2
low

)
; if not selected, it enters the medium-risk domain

with probability pmed(x) defined analogously using qmed and σmed; any remaining sample
is assigned to the high-risk with probability phigh(x), defined similarly. The bandwidths
{σlow, σmed, σhigh} are optimized to maximize the largest importance weight between any
pair of domains while ensuring the expected dataset sizes lie in [5× 104, 1.5× 105].

Since the sampling procedure is label-independent, the resulting domains differ solely
by covariate shift. Let Si be the indicator that a sample is assigned to domain i, and let
Pi, Pj be the corresponding distributions. Then, the importance weight is

dPi

dPj
(x, y) =

P(Si = 1 | x)
P(Sj = 1 | x)

P(Sj = 1)

P(Si = 1)
,

which is a function of x alone, confirming the covariate shift assumption. Under the sequen-
tial scheme, we have P(Slow = 1 | x) = plow(x), P(Smed = 1 | x) = (1 − plow(x)) pmed(x),
and P(Shigh = 1 | x) = (1 − plow(x)) (1 − pmed(x)) phigh(x). Marginal selection proba-
bilities can be estimated via Monte Carlo as P(Sk = 1) ≈ n−1

∑n
i=1 P(Sk = 1 | xi), for

k ∈ {low,med, high}, and used to estimate dataset sizes.
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Appendix B. P-value ablations

In this appendix, we compare the use of the WSR p-value against other possible p-values.
We consider the Hoeffding-Bentkus p-value for testing H0(λ, α) (Angelopoulos et al., 2025).
Since this approach only works for losses supported in [0, 1], we consider the rescaled hy-

pothesis H0(λ, α) :
R(λ)−l′

u′−l′ > α−l′

u′−l′ (see Section 3), yielding the following p-value:

p(λ, α) = min

(
exp

{
−nh

(
R̂w(λ)− l′

u′ − l′
,
α− l′

u′ − l′

)}
, eF

Bin
(
n, α−l′

u′−l′

)
(⌈

n
R̂w(λ)− l′

u′ − l′

⌉))
,

where Rw(λ) = n−1
s

∑ns
i=1w(Xi)L(Xi, Yi;λ) and h(a, b) = a log(a/b)+(1−a) log((1−a)/(1−

b)). We also consider the application of Bernstein’s inequality for this hypothesis test (Bates
et al., 2021). In particular, we reject H0(λ, α) if

R̂w(λ)− l′

u′ − l′
+

σ̂w(λ)

u′ − l′

√
2 log(2/δ)

n
+

7 log(2/δ)

3(n− 1)
≤ α− l′

u′ − l′
,

where σ̂w(λ) =
√

(ns − 1)−1
∑ns

i=1(L(Xi, Yi;λ)− R̂w(λ))2 denotes the empirical importance-
weighted risk standard deviation. For brevity, we report only the BAF results, where the
covariate shift assumption is guaranteed to hold. Figures 5 and 6 replicate the analysis
of Section 4. Results show that the WSR p-value is the least conservative of the three,
bringing the FPR the closest to α and achieving the lowest average FNR.
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Figure 5: 0.95 FPR quantiles (vertical axis) vs. source sample size (horizontal axis) for each
target domain in BAF. WSR yields 0.95 FPR quantiles closest to 0.05.
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Figure 6: Mean FNR (vertical axis) vs. source sample size (horizontal axis) for each target
domain in BAF. Out of the three p-values, WSR achieves the lowest FNR values.
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Appendix C. Computational Considerations

We now conduct a brief analysis of the computational cost of LTT-IW. All experiments
were run on a machine with a 14-core CPU and 20-core GPU Apple M4 chip, 24GB of
RAM, and a 512GB SSD. We first analyze KMM, which dominates runtime due to the need
to solve multiple quadratic programs. Table 1 presents runtime, peak memory usage, and
source/target dataset sizes (ns, nt) for each target domain in both datasets.

LTT can be made lightweight by precomputing model scores once before running the
procedure. To evaluate scalability, we measure the average runtime and peak memory
usage across all LTT runs on the low domain of BAF, varying the size of the subsampled
calibration set N . Figure 7 shows that both metrics grow roughly linearly with N .

Table 1: Execution time, peak memory usage, and dataset size statistics for KMM.

(a) BAF

Domain Time
(min)

Mem.
(GB)

ns nt

low 9.28 1.303 56,196 16,224
medium 6.03 1.493 31,537 40,883
high 9.45 1.296 57,107 15,313

(b) DomainNet

Domain Time
(min)

Mem.
(GB)

ns nt

clipart 33.23 4.597 176,743 14,604
real 46.20 4.790 176,743 52,041
infograph 35.56 4.603 176,743 15,582
painting 38.25 4.635 176,743 21,850
sketch 37.22 4.630 176,743 20,916
quickdraw 46.75 4.719 176,743 51,750
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Figure 7: Runtime (left panel) and peak memory usage (right panel) of LTT-IW as a
function of calibration subset size on the low domain of BAF. Both scale approximately
linearly.

Appendix D. Variance Reduction Techniques

High-variance losses can inflate p-values, reducing the power to detect risk-controlling con-
figurations. One classical approach to mitigate this is to use a control variate T (X,Y ;λ)
(Glasserman, 2003), which yields the following adjusted loss with the same expectation:

Lcv(X,Y ;λ) = w(X)L(X,Y ;λ) + η(T (X,Y ;λ)− E[T (X,Y ;λ)]),

where η = −Cov[w(X)L(X,Y ;λ), T (X,Y ;λ)]/Var[T (X,Y ;λ)] is chosen to to minimize the
variance of Lcv. We choose T (X,Y ;λ) = w(X), since EPsource [w(X)] = 1 (You et al., 2019).
Figures 8 and 9 show the results for LTT-IW with and without control variates. To preserve
the i.i.d. nature of the data, we use half of the source data to estimate η and perform risk
control on the other half. The introduction of control variates yields more conservative
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results; the variance reduction obtained may be outweighed by the fewer data used for
hypothesis testing. Future work could explore more sample-efficient variance reduction
techniques or smarter ways to allocate data for variance reduction. It is important to note
that the range of the loss changes from [0, B] to [min(ηB, 0)− η,max((1+ η)B, 0)− η]. For
η > 0, it expands from B to (1 + η)B, meaning variance reduction comes at the cost of a
wider range, which may reduce p-value power.
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Figure 8: 0.95 FPR quantiles (vertical axis) vs. source sample size (horizontal axis) for each
target domain in BAF. Control variates yield more conservative risk levels.
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Figure 9: Mean FNR (vertical axis) vs. source sample size (horizontal axis) for each target
domain in BAF. Using control variates results in higher FNR.

Appendix E. Sensitivity to the Importance Weight Upper Bound

This appendix reports a sensitivity analysis regarding the choice of the importance weight
upper bound B, comparing the WSR p-value to the (asymptotically valid) normal p-value
(Angelopoulos et al., 2025):

p(λ, α) = Φ

(
n−1
s

∑ns
i=1w(Xi)L(Xi, Yi;λ)− α√

σ̂2
w/ns

)
,

which eliminates the need to specify B. We consider the BAF dataset and 10,000 calibration
points, setting B = γB̂ for γ ∈ {1, 1.5, 2, 2.5, 3.0}, where B̂ is the sample maximum impor-
tance weight. As shown in Figures 10 and 11, LTT-IW becomes increasingly conservative
with larger γ, while the normal p-value remains unaffected, as expected.

Kuzborskij and Szepesvári (2020) propose a self-normalized high-probability lower bound
on the true risk. Let L be a loss supported in [0, 1]; then, with probability at least
1− (ns + 1)e−x, for x ≥ 2 and y ≥ 0, we have

RPtarget(λ) ≥
Nx(ns)

ns

(∑ns
i=1w(Xi)L(Xi, Yi;λ)∑ns

i=1w(Xi)
−
√
2(2VW + y)

(
1 + ln

(√
1 + 2VW/y

))
x

)
,
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Figure 10: 0.95 FPR quantiles (vertical axis) vs. source sample size (horizontal axis) for
each target domain in BAF as a function of the multiplicative factor γ.
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Figure 11: Mean FNR (vertical axis) vs. source sample size (horizontal axis) for each target
domain in BAF as function of the multiplicative factor γ.

where Nx(ns) =
(
ns −

√
2xns E[w2(X)]

)
+

and VW = 1
N2

x(ns)

∑ns
i=1

(
w2(Xi) + E[w2(X)]

)
.

From here, an upper bound can be derived for hypothesis testing by setting L′ = 1 − L,
identifying the l.h.s. with 1 − E[L(X,Y ;λ)] and solving the inequality for E[L(X,Y ;λ)].
However, it assumes that E[w2(X)] is known. Future work could address this limitation, as
well as investigate optimal choices of y.

Appendix F. LightGBM Parameter Grid

Table 2: Hyperparameter grid used for LightGBM

Parameter Suggestion type Range
learning rate log-uniform [0.01, 0.50]
max. number of leaves integer [10, 201]
max. depth integer [−1, 21]
min. points per leaf integer [20, 101]
data subsample fraction uniform [0.5, 1.0]
feature subsample fraction uniform [0.5, 1.0]
boosting iterations integer [50, 1000]
L2 regularisation constant log-uniform [10, 10 000]
negative-class subsample fraction uniform [0.01, 0.5]
early-stopping rounds integer [20, 100]
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