
RIFF: Inducing Rules for Fraud Detection from
Decision Trees

Lucas Martins1, João Bravo1, Ana Sofia Gomes1, Carlos Soares2, and Pedro
Bizarro1

1 Feedzai, Portugal
2 Faculdade de Engenharia da Universidade do Porto, Portugal

Abstract. Financial fraud is the cause of multi-billion dollar losses an-
nually. Traditionally, fraud detection systems rely on rules due to their
transparency and interpretability, key features in domains where deci-
sions need to be explained. However, rule systems require significant
input from domain experts to create and tune, an issue that rule induc-
tion algorithms attempt to mitigate by inferring rules directly from data.
We explore the application of these algorithms to fraud detection, where
rule systems are constrained to have a low false positive rate (FPR) or
alert rate, by proposing RIFF, a rule induction algorithm that distills a
low FPR rule set directly from decision trees. Our experiments show that
the induced rules are often able to maintain or improve performance of
the original models for low FPR tasks, while substantially reducing their
complexity and outperforming rules hand-tuned by experts.

Keywords: Fraud Detection; Rule Induction; Decision Trees

Fig. 1. RIFF Overview

1 Introduction

Despite the advent of modern machine learning (ML) algorithms, rule systems
continue to be important in many domains [1, 20]. Their simplicity and inter-
pretability, often requirements in high stake problems, as well as their longstand-
ing presence has earned the trust of many financial institutions. Many continue

2 L. Martins et al.

to use rule systems as their only solution for fraud detection, while others use
them alongside machine learning models.

However, building rule sets traditionally requires expert input and their pre-
dictive performance is typically worse than modern machine learning models.
This could potentially be attributed, at least in part, to the fact that rules are
not automatically inferred from data, but instead manually created and tuned.

While there are several induction algorithms that infer rules from data [17, 4,
19, 20, 16, 13, 10, 5, 6], applying them to fraud detection can be problematic due
to the extreme class imbalance that is often present, and the requirement to have
very low FPR values, typically under 2%. The latter is necessary as incorrectly
flagging legitimate transactions can cause friction, eroding customer trust, lead-
ing to financial losses, and putting undue pressure on manual reviewers. Another
challenge is to induce rules that are easily understood by experts, which is a re-
quirement in fraud detection for two reasons. Firstly, experts often times need
to review the decision made by a rule, and, as such, they must understand its
reasoning. Secondly, experts need to manually modify rules periodically to keep
up with new fraud patterns.

Our main contribution is a rule induction algorithm, RIFF, that leverages
decision trees to build low FPR rule sets for fraud detection. As illustrated in
Figure 1, RIFF builds rules by inferring them from data, in order to save expert
time spent on maintaining rule sets and analyzing fraud. We benchmark RIFF
against state-of-the-art decision trees algorithms, CART and FIGS, and against
expert made rules. Our experiments use both publicly available and private
real world transaction data, and we benchmark RIFF using trees generated by
CART, FIGS, and by our own modified version of FIGS, FIGU. Our results show
that induced rule sets created by RIFF outperform a rule system hand-tuned
by experts. Plus, RIFF’s rules are shown to maintain or improve performance of
the original decision tree models, while substantially reducing their complexity.

2 Related Work

Prior work on rule set induction can be divided into two distinct approaches.
Separate-and-conquer algorithms, also known as covering algorithms, form rule
sets by adding rules one by one until a stopping criterion is met [14, 15, 5, 18, 7,
9]. They typically rely on a heuristic to choose the best rule to add, removing
all examples covered by that rule going forward.

On the other hand, divide-and-conquer algorithms such as ID3 [17], C4.5 [19]
and CART [4], use decision trees to describe the data. These trees are grown in a
greedy fashion, by iteratively splitting a current leaf node based on the value of
one attribute to maximize a chosen criterion, such as information gain. FIGS [20]
expands on these algorithms (namely CART) by introducing the option of adding
a new tree by splitting on a new root node instead of an existing leaf node. Each
tree independently contributes to the model with a score that is summed to
produce the final prediction.

RIFF 3

3 Rule Induction for Fraud Detection

Rule systems used in the context of fraud detection are typically composed of
tens to hundreds of simple rules, each designed to capture a particular fraud
pattern. These rules are usually a conjunction of a small set of logical conditions
that can be understood by a human and evolved with time by tuning specific
thresholds. Fraud detection systems are also usually constrained to operate with
an overall low False Positive Rate (FPR) or Alert Rate (AR). This is to limit the
friction caused to legitimate users or to limit the total number of alerts generated
according to the capacity of a fraud analyst team.

Decision tree algorithms like CART have formed the basis of state-of-the-art
algorithms for tabular data when used in ensembles such as Random Forests
[3] or Gradient-Boosted Decision Trees [8]. However, even single decision trees
can be hard to understand and interpret by humans and they can’t be manu-
ally tuned by experts. We thus propose leveraging these algorithms to generate
candidate rules with good discriminative performance. For this, our proposed
algorithm, RIFF, is split into two steps (see Figure 1):

1. We induce a set of candidate rules from the leaves of a tree-based model
trained on an induction set. This candidate set would, ideally, contain dif-
ferent rules with high precision, corresponding to leaves with high purity of
fraud examples.

2. The best performing rules out of this candidate set are selected in a greedy
fashion based on their performance in an out of sample selection set to yield
a small set of rules that work well together.

Over the next two sections we describe in detail these two steps.

3.1 Rule Induction from Decision Trees

In order to generate a low FPR rule set, we extract rules from decision trees. We
base this decision on the fact the typical splitting criterion tries to find the purest
leaves, i.e., leaves with highest precision that in theory maximize the amount of
gained recall per FPR. For this reason, we will assume that all rules in extracted
candidate set predict the positive class.

After creating a tree with suitable, high purity leaves, we form a candidate
rule set by extracting one rule for each leaf. We do this by traversing the path
from the root node to each leaf and by forming a new rule with the conditions
in this path. Figure 2 shows an example where a tree model with 5 leaves was
converted to a rule set.

This method does not extend well to additive tree models like FIGS, because
it ignores tree scores when converting leaves to decision rules. To choose the best
split on a tree i ∈ [T], FIGS uses a mean squared error criterion with residuals
calculated by subtracting from the label the predictions from all other trees j as
targets. For a sample (x, y), the residual, ri, for tree i is thus given by:

ri(x, y) = y −
∑

j∈[T],j ̸=i

ŷj(x) , (1)

4 L. Martins et al.

Fig. 2. Extracting rules from a FIGS model

where ŷj is the prediction for tree j. This additive approach means that leaves
generated by FIGS may not be pure enough to yield low FPR rules since they
are meant to complement the predictions made by other trees.

For this reason, we modify FIGS by binarizing the residual computation,
thus turning its Greedy Tree Sums into Greedy Tree Unions. Concretely, when
considering how to split a current leaf node in a tree i, we discard any samples
that fall into the support of that node if they are already covered by a current
leaf node of another tree j. I.e., we discard a sample (x, y) when evaluating the
splitting criterion if: ∨

j∈[T],j ̸=i

ŷj(x) = true , (2)

where ŷj(x) is now a binary prediction for tree j that evaluates to true if: 1) x
falls into the support of a current leaf in tree j with high enough precision (as
specified by a user provided threshold); 2) it falls into the support of the current
best leaf of tree j as measured by precision. We call this modified version FIGU
in the sequence.

3.2 Rule Selection

As mentioned in Section 3, the rule selection step aims to distill a potentially
large set of candidate fraud rules into a smaller set, maximizing the number of
fraud cases captured, i.e., the True Positive Rate (TPR) of the system, while
keeping its FPR or Alert Rate below a given threshold. For concreteness, we will
focus on the former constraint, FPR, in the exposition.

Writing as cov(R;D) the example set covered by a rule set R on dataset D,
we have:

TPR(R) =
|cov(R;D+)|

|D+|
, FPR(R) =

|cov(R;D−)|
|D−|

,

where we denote by D+ and D− the subsets of positive and negative examples
respectively. We can thus formalize the rule selection goal as choosing a subset
of rules S from a given set of candidate rules C = {c1, c2, . . . , cn} to solve:

max
S∈2C

TPR(S) s.t. FPR(S) ≤ FPRmax . (3)

Both TPR and FPR are monotone non-decreasing submodular functions and
this optimization problem is NP-hard [11]. We therefore propose a simple greedy

RIFF 5

heuristic algorithm that iteratively selects rules with the highest precision in the
remaining uncovered samples, until a stopping condition is met. In our case,
we stop when the FPR of the selected rule set surpasses FPRmax . We assume
that this always occurs over the runtime of the algorithm, i.e., that FPR(C) ≥
FPRmax.

Algorithm 1 Greedy Rule Selection Algorithm
Input: (C = c1, c2, . . . , cn); FPRmax; D
D′ ← D
S ← {}
i← 0
while FPR(S;D) < FPRmax do

i← i+ 1
ri ← argmaxr∈C\S Precision(r;D′)
D′ ← D′ \ cov(ri;D′)
S ← S ∪ {ri}

end while
return r1, . . . , ri

This algorithm returns a list of rules in the order they were selected. Defin-
ing Si := {r1, . . . , ri} we have that Sl−1 is guaranteed to satisfy the FPRmax
constraint, whereas Sl may violate it, with l denoting the length of the returned
list.

To compare rule sets with different FPR values generated from separate
candidate sets, we relax our solution set to include randomized rule sets. Instead
of outputting a fixed subset S of our candidate set, we output a probability for
every rule in C to be selected. All rules, except the last rule, are thus selected
with probability 1. However, for the last rule selected, rl, this probability is
chosen to match the expected FPR with the desired FPR constraint. Formally,
the probability ρ(c) for a rule c ∈ C to be selected is:

ρ(c) =


1 c ∈ Sl−1
FPRmax−FPR(Sl−1)
FPR(Sl)−FPR(Sl−1)

c = rl
0 c /∈ Sl

,

In practical terms, this means that if a sample is only covered by the last rule,
rl, there is a probability ρ(rl) of it triggering, therefore influencing the system’s
decision. In other words, the rule is only checked for a random subset of examples.
With this in mind, we can interpret the TPR of this randomized rule system as
a random variable with an expected value given by:

TPR(ρ) = (1− ρ(rl))TPR(Sl−1) + ρ(rl)TPR(Sl) .

4 Experiments

We evaluate RIFF on two public classification datasets: BAF [12], a synthetic
bank account fraud dataset, and Taiwan credit [2], a credit card default dataset.

6 L. Martins et al.

We also use a private dataset, containing real transaction fraud data, which we
cannot disclose due to privacy and contractual reasons. A baseline unique to this
dataset is a set of rules manually tuned by data scientists allowing us to compare
the rules generated by RIFF against rules handcrafted by experts. An overview
of the used datasets can be seen in Table 1.

Table 1. Dataset Analysis Summary. The train/validation/test splits are time-based
for the BAF and Industry datasets and random for Taiwan Credit.

BAF Industry Taiwan Credit
Task Account Fraud Transaction Fraud Credit Card Default
Positive rate 1% 7% 22%
#samples 1M 3.5M 30K
#features 32 113 25
Train split 75% 60% 60%
Validation and test split 12.5% 20% 20%

We split the training set into two smaller subsets: induction and selection.
After using the induction set to train CART, FIGS and FIGU models, we extract
candidate rules from the generated tree models, as described in Section 3.1. We
then apply the selection step of the algorithm to extract the best rules from each
candidate set according to their performance on the selection set. We use the
validation set to tune the total number of splits used when training the decision-
tree model, using a line search over the values [10, 20, 30, 40, 50] and the test
set for the final evaluation of the generated rule set.

We use LightGBM as a strong baseline for predictive performance as a state-
of-the-art Machine Learning algorithm for tabular data. We also report the per-
formance of the best CART and FIGS models trained in the induction step as
divide-and-conquer baselines.

Table 2. Recall at 1% FPR in the test split for BAF, Credit and Industry Datasets

BAF Industry Taiwan Credit
LightGBM 0.252 0.531 0.084

Expert Rules - 0.158 -

CART 0.160±0.005 0.315±0.075 0.063±0.009

CART + RIFF 0.184 ±0.006 0.362 ±0.027 0.139 ±0.018

FIGS 0.210±0.006 0.394 ±0.032 0.067±0.016

FIGS + RIFF 0.158±0.016 0.311±0.018 0.136 ±0.019

FIGU + RIFF 0.155±0.010 0.382±0.039 0.104±0.007

We repeat our setup using 5 different seeds for the model training and the
sampling of the induction and selection sets. In Table 2 and 3 we report the
average performance and average length of generated rule sets respectively, as

RIFF 7

Table 3. Generated Rule set length for BAF, Credit and Industry Datasets

BAF Industry Taiwan Credit
Expert Rules - 13.0 -
CART + RIFF 10.4±3.647 17.8±4.087 5.2±1.483

FIGS + RIFF 8.0±1.732 9.2±1.304 7.6±1.949

FIGU + RIFF 3.6 ±0.548 3.4 ±0.548 1.0 ±0.000

well as the associated standard deviations. Interestingly, using RIFF on CART
always improved its performance, a possible indication that CART was over-
fitting and RIFF reduced this by selecting its best rules. For the dataset with
fewer samples, Taiwan Credit, RIFF increased the performance of CART and
FIGS significantly, surpassing even LightGBM’s performance. FIGU appears to
generate rule sets that have similar performance to FIGS with much fewer rules,
an indication that FIGU is able to reduce the overlap between generated trees,
leading to shorter and, in theory, simpler to understand rule sets.

5 Conclusion And Future Work
In this work we propose RIFF, a rule induction algorithm that builds low FPR
rule sets for fraud detection by greedily extracting rules from a tree based model
like CART or FIGS. We also propose a slight modification to FIGS, FIGU,
that aims to lower decision tree complexity so that it can be used by the RIFF
selection algorithm to generate shorter rulesets. We perform a study with real
world transaction data that shows that RIFF is able to perform better than
expert rules, while maintaining the predictive performance of the original models
and reducing their complexity.

While RIFF effectively generates a more concise and shorter rule set, it might
provide complex, lengthier rules. We could expand the candidate set to also
consider all nodes, instead of only leaves. This methodology draws a parallel to
pruning methods, as this ideally leads RIFF into choosing more general, lower
depth nodes in favour of their more specific, children nodes, similar to pruning.

A possible way to generate a more varied and robust rule set could involve
extracting rules from all the trained CART and FIGS models into an unique
candidate set. Since our setup subsamples the training set into subsests, and
uses them to train these models, this is equivalent to applying the RIFF selection
algorithm to a Random Forest [3] or Bagging FIGS [20].

References

1. Aparício, D., Barata, R., Bravo, J., Ascensão, J.T., Bizarro, P.: ARMS: automated
rules management system for fraud detection. CoRR abs/2002.06075 (2020)

2. Bache, K., Lichman, M.: UCI machine learning repository (2013),
http://archive.ics.uci.edu/ml

3. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (Oct 2001).
https://doi.org/10.1023/A:1010933404324

8 L. Martins et al.

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984), http://lyle.smu.edu/~mhd/8331f06/cart.pdf

5. Cendrowska, J.: Prism: An algorithm for inducing modular rules. In-
ternational Journal of Man-Machine Studies 27(4), 349–370 (1987).
https://doi.org/10.1016/S0020-7373(87)80003-2

6. Clark, P., Niblett, T.: The cn2 induction algorithm. Machine Learning 3, 261–283
(1989). https://doi.org/10.1023/A:1022641700528

7. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Ma-
chine Learning Proceedings 1995, pp. 115–123. Morgan Kaufmann, San Francisco
(CA) (1995). https://doi.org/10.1016/B978-1-55860-377-6.50023-2

8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

9. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: ICML. pp.
70–77 (1994). https://doi.org/10.1016/B978-1-55860-335-6.50017-9

10. Hong J., Mozetic I., M.R.S.: Aq15: Incremental learning of attribute-based de-
scriptions from examples, the method and user’s guide. Reports of the Intelligent
Systems Group (07 1986), https://hdl.handle.net/1920/1605

11. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover
and submodular knapsack constraints. CoRR abs/1311.2106 (2013),
http://arxiv.org/abs/1311.2106

12. Jesus, S., Pombal, J., Alves, D., Cruz, A., Saleiro, P., Ribeiro, R.P., Gama, J.,
Bizarro, P.: Turning the Tables: Biased, Imbalanced, Dynamic Tabular Datasets
for ML Evaluation. Advances in Neural Information Processing Systems (2022)

13. Kusters, R., Kim, Y., Collery, M., de Sainte Marie, C., Gupta, S.:
Differentiable rule induction with learned relational features (2022).
https://doi.org/10.48550/ARXIV.2201.06515

14. Michalski, R.S.: Pattern recognition as rule-guided inductive inference. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-2, 349–361
(1980), https://api.semanticscholar.org/CorpusID:16719183

15. Michalski, R.S., Mozeti, I., Hong, J., Lavra, N.: The multi-purpose in-
cremental learning system aq15 and its testing application to three
medical domains. In: AAAI Conference on Artificial Intelligence (1986),
https://api.semanticscholar.org/CorpusID:18018701

16. Qiao, L., Wang, W., Lin, B.: Learning accurate and interpretable de-
cision rule sets from neural networks. CoRR abs/2103.02826 (2021),
https://arxiv.org/abs/2103.02826

17. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986).
https://doi.org/10.1007/BF00116251

18. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5,
239–266 (1990), https://api.semanticscholar.org/CorpusID:6746439

19. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993). https://doi.org/10.1007/BF00993309

20. Tan, Y.S., Singh, C., Nasseri, K., Agarwal, A., Yu, B.: Fast interpretable greedy-
tree sums (FIGS). CoRR abs/2201.11931 (2022)

