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ABSTRACT

Tabular data is prevalent in many high-stakes domains, such as financial services
or public policy. Gradient Boosted Decision Trees (GBDT) are popular in these
settings due to their scalability, performance, and low training cost. While fairness
in these domains is a foremost concern, existing in-processing Fair ML methods
are either incompatible with GBDT, or incur in significant performance losses
while taking considerably longer to train. We present FairGBM, a dual ascent
learning framework for training GBDT under fairness constraints, with little to
no impact on predictive performance when compared to unconstrained GBDT.
Since observational fairness metrics are non-differentiable, we propose smooth
convex error rate proxies for common fairness criteria, enabling gradient-based
optimization using a “proxy-Lagrangian” formulation. Our implementation1 shows
an order of magnitude speedup in training time relative to related work, a pivotal
aspect to foster the widespread adoption of FairGBM by real-world practitioners.

1 INTRODUCTION

The use of Machine Learning (ML) algorithms to inform consequential decision-making has become
ubiquitous in a multitude of high-stakes mission critical applications, from financial services to
criminal justice or healthcare (Bartlett et al., 2019; Brennan et al., 2009; Tomar & Agarwal, 2013). At
the same time, this widespread adoption of ML was followed by reports surfacing the risk of bias and
discriminatory decision-making affecting people based on ethnicity, gender, age, and other sensitive
attributes (Angwin et al., 2016; Bolukbasi et al., 2016; Buolamwini & Gebru, 2018). This awareness
led to the rise of Fair ML, a research area focused on discussing, measuring and mitigating the risk of
bias and unfairness in ML systems. Despite the rapid pace of research in Fair ML (Hardt et al., 2016;
Zafar et al., 2017; Agarwal et al., 2018; Narasimhan et al., 2019; Celis et al., 2021) and the release
of several open-source software packages (Saleiro et al., 2018; Bellamy et al., 2018; Agarwal et al.,
2018; Cotter et al., 2019b), there is still no clear winning method that “just works” regardless of data
format and bias conditions.

Fair ML methods are usually divided into three families: pre-processing, in-processing and post-
processing. Pre-processing methods aim to learn an unbiased representation of the training data but
may not guarantee fairness in the end classifier (Zemel et al., 2013; Edwards & Storkey, 2016); while
post-processing methods inevitably require test-time access to sensitive attributes and can be sub-
optimal depending on the structure of the data (Hardt et al., 2016; Woodworth et al., 2017). Most in-
processing Fair ML methods rely on fairness constraints to prevent the model from disproportionately
hurting protected groups (Zafar et al., 2017; Agarwal et al., 2018; Cotter et al., 2019b). Using
constrained optimization, we can optimize for the predictive performance of fair models.

In principle, in-processing methods have the potential to introduce fairness with no training-time
overhead and minimal predictive performance cost – an ideal outcome for most mission critical
applications, such as financial fraud detection or medical diagnosis. Sacrificing a few percentage
points of predictive performance in such settings may result in catastrophic outcomes, from safety

1https://github.com/feedzai/fairgbm
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hazards to substantial monetary losses. Therefore, the use of Fair ML in mission critical systems is
particularly challenging, as fairness must be achieved with minimal performance drops.

Tabular data is a common data format in a variety of mission critical ML applications (e.g., financial
services). While deep learning is the dominant paradigm for unstructured data, gradient boosted
decision trees (GBDT) algorithms are pervasive in tabular data due their state-of-the art performance
and the availability of fast, scalable, ready-to-use implementations, e.g., LightGBM (Ke et al., 2017)
or XGBoost (Chen & Guestrin, 2016). Unfortunately, Fair ML research still lacks suitable fairness-
constrained frameworks for GBDT, making it challenging to satisfy stringent fairness requirements.

As a case in point, Google’s TensorFlow Constrained Optimization (TFCO) (Cotter et al., 2019b), a
well-known in-processing bias mitigation technique, is only compatible with neural network models.
Conversely, Microsoft’s ready-to-use fairlearn EG framework (Agarwal et al., 2018) supports GBDT
models, but carries a substantial training overhead, and can only output binary scores instead of
a continuous scoring function, making it inapplicable to a variety of use cases. Particularly, the
production of binary scores is incompatible with deployment settings with a fixed budget for positive
predictions (e.g., resource constraint problems (Ackermann et al., 2018)) or settings targeting a
specific point in the ROC curve (e.g., fixed false positive rate), such as in fraud detection.

To address this gap in Fair ML, we present FairGBM, a framework for fairness constrained opti-
mization tailored for GBDT. Our method incorporates the classical method of Lagrange multipliers
within gradient-boosting, requiring only the gradient of the constraint w.r.t. (with relation to) the
model’s output Ŷ . Lagrange duality enables us to perform this optimization process efficiently as a
two-player game: one player minimizes the loss w.r.t. Ŷ , while the other player maximizes the loss
w.r.t. the Lagrange multipliers. As fairness metrics are non-differentiable, we employ differentiable
proxy constraints. Our method is inspired by the theoretical ground-work of Cotter et al. (2019b),
which introduces a new “proxy-Lagrangian” formulation and proves that a stochastic equilibrium
solution does exist even when employing proxy constraints. Contrary to related work, our approach
does not require training extra models, nor keeping the training iterates in memory.

We apply our method to a real-world account opening fraud case study, as well as to five public
benchmark datasets from the fairness literature (Ding et al., 2021). Moreover, we enable fairness
constraint fulfillment at a specific ROC point, finding fair models that fulfill business restrictions on
the number of allowed false positives or false negatives. This feature is a must for problems with high
class imbalance, as the prevailing approach of using a decision threshold of 0.5 is only optimal when
maximizing accuracy. When compared with state-of-the-art in-processing fairness interventions, our
method consistently achieves improved predictive performance for the same value of fairness.

In summary, this work’s main contributions are:

• A novel constrained optimization framework for gradient-boosting, dubbed FairGBM.

• Differentiable proxy functions for popular fairness metrics based on the cross-entropy loss.

• A high-performance implementation1 of our algorithm.

• Validation on a real-world case-study and five public benchmark datasets (folktables).

2 FAIRGBM FRAMEWORK

We propose a fairness-aware variant of the gradient-boosting training framework, dubbed FairGBM.
Our method minimizes predictive loss while enforcing group-wise parity on one or more error rates.
We focus on the GBDT algorithm, which uses regression trees as the base weak learners (Breiman,
1984). Moreover, the current widespread use of GBDT is arguably due to two highly scalable variants
of this algorithm: XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017). In this work
we provide an open-source fairness-aware implementation of LightGBM. Our work is, however,
generalizable to any gradient-boosting algorithm, and to any set of differentiable constraints (not
limited to fairness constraints). We refer the reader to Appendix G for notation disambiguation.
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2.1 OPTIMIZATION UNDER FAIRNESS CONSTRAINTS

Constrained optimization (CO) approaches aim to find the set of parameters θ ∈ Θ that minimize the
standard predictive loss L of a model fθ given a set of m fairness constraints ci, i ∈ {1, ...,m}:

θ∗ = argmin
θ∈Θ

L(θ) s. t.
i∈{1,...,m}

ci(θ) ≤ 0. (1)

This problem is often re-formulated using the Lagrangian function,

L(θ, λ) = L(θ) +

m∑
i=1

λici(θ), (2)

where λ ∈ Rm
+ is the vector of Lagrange multipliers. The problem stated in Equation 1 is then, under

reasonable conditions, equivalent to:

θ∗ = argmin
θ∈Θ

max
λ∈Rm

+

L(θ, λ), (3)

which can be viewed as a zero-sum two-player game, where one player (the model player) minimizes
the Lagrangian w.r.t. the model parameters θ, while the other player (the constraint player) maximizes
it w.r.t. the Lagrange multipliers λ (Neumann, 1928). A pure equilibrium to this game will not exist
in general for a given CO problem. Sufficient conditions for there to be one are, for example, that the
original problem is a convex optimization problem satisfying an appropriate constraint qualification
condition (Boyd et al., 2004). Consequently, two main issues arise when using classic CO methods
with fairness metrics: the loss functions of state-of-the-art ML algorithms are non-convex (as is the
case of neural networks), and standard fairness metrics are non-convex and non-differentiable.

2.2 DIFFERENTIABLE PROXIES FOR FAIRNESS METRICS

As a fundamentally subjective concept, there is no “one-size-fits-all” definition of fairness. Nonethe-
less, popular fairness notions can be defined as equalizing rate metrics across sensitive at-
tributes (Saleiro et al., 2018; Barocas et al., 2019). For example, equality of opportunity (Hardt et al.,
2016) is defined as equalizing expected recall across members of specific protected groups (e.g.,
different genders or ethnicities). We will focus on fairness metrics for classification tasks, as the
discontinuities between class membership pose a distinct challenge (non-differentiability of the step-
wise function). Extension to the regression setting is fairly straightforward, as these discontinuities
are no longer present and common fairness metrics are already differentiable (Agarwal et al., 2019).

In the general case, a model f is deemed fair w.r.t. the sensitive attribute S and some rate metric L if
the expected value of L is independent of the value of s ∈ S:

E [L(f)] = E [L(f)|S = s] , ∀s ∈ S. (4)

Equation 4 can be naturally viewed as an equality constraint in the model’s training process after
replacing expectations under the data distribution by their sample averages. However, as discussed
in Section 2.1, common fairness notions (i.e., common choices of L) are non-convex and non-
differentiable. Therefore, in order to find a solution to this CO problem, we must use some proxy
metric L̃ that is indeed differentiable (or at least sub-differentiable) (Cotter et al., 2019b).

Figure 1 shows examples of convex and sub-differentiable surrogates for the False Positive Rate
(FPR). Equalizing FPR among sensitive attributes is also known as predictive equality (Corbett-Davies
et al., 2017). As any function of the confusion matrix, the FPR takes in predictions binarized using a
step-wise function. As no useful gradient signal can be extracted from the step-wise function, we
instead use a cross-entropy-based proxy metric that upper-bounds the step-wise function. Ideally, for
some fairness constraint c, we can guarantee its fulfillment by solving the CO problem using a proxy
upper-bound c̃, such that c(θ) ≤ c̃(θ) ≤ 0. Note that, while Cotter et al. (2019b) use a hinge-based
proxy, which has a discontinuous derivative, we opt for a cross-entropy-based proxy, which has a
continuous derivative, leading to a smoother optimization process. Table 1 shows instance-wise rate
metrics commonly used to compose fairness metrics and the proposed proxy counterparts.
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Figure 1: Convex proxies for instance-wise FPR metric, for a data sample (xi, yi) with negative label.

Name Proxy metric, l̃ Proxy derivative, ∂l̃
∂f(x) Fairness metric

False positive I[y = 0] · log(1 + ef(x)) I[y = 0] · σ(f(x)) predictive equality
False negative I[y = 1] · log(1 + e−f(x)) I[y = 1] · [σ(f(x))− 1] equal opportunity
Predicted pos. log(1 + ef(x)) σ(f(x)) demographic parity
Predicted neg. log(1 + e−f(x)) σ(f(x))− 1 demographic parity

Table 1: Instance-wise metrics used to compose common error rates and corresponding cross-entropy-
based proxy metrics. σ is the sigmoid function, f(x) is the predicted log-odds of instance x, and
y ∈ {0, 1} the binary label.

In practice, the fairness constraint in Equation 4 is implemented using the set of m = |S| inequalities
in Equation 5, i.e., we have, for every b ∈ S:

c̃b(f) = max
a∈S

L̃(S=a)(f)− L̃(S=b)(f) ≤ ϵ, (5)

where ϵ ∈ R+ ∪ {0} is the allowed constraint violation, and

L̃(S=s)(f) =
1∣∣D(S=s)

∣∣ ∑
(x,y)∈D(S=s)

l̃(y, f(x)), (6)

is the proxy loss measured over the dataset D(S=s) ⊆ D of samples with sensitive attribute S = s.
Original (non-proxy) counterpart functions, cb and L(S=s), are obtained by substituting the proxy
instance-wise metric l̃ with its original (potentially non-differentiable) counterpart l.

2.3 FAIRNESS-AWARE GBDT

If our objective function and constraints were convex, we could find the pure Nash equilibrium of the
zero sum, two-player game corresponding to the saddle point of the Lagrangian, L. This equilibrium
could be found by iterative and interleaved steps of gradient descent over our model function, f , and
ascent over the Lagrange multipliers, λ. Importantly, this setting is relevant for GBDT models but
not for Neural Networks, as the first have a convex objective and the latter do not. See Appendix C
for a discussion on the limitations of our method.

However, as discussed in Section 2.2, fairness constraints are not differentiable, and we must employ
differentiable proxies to use gradient-based optimization. Instead of using the Lagrangian L, we
instead use a proxy-Lagrangian L̃,

L̃(f, λ) = L(f) +

m∑
i=1

λic̃i(f), (7)

where L is a predictive loss function, and c̃i is a proxy inequality constraint given by Equation 5.
On the other hand, simply using L̃ for both descent and ascent optimization steps would now be
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Algorithm 1 FairGBM training pseudocode

Input: T ∈ N, number of boosting rounds
L, L̃ : F × Rm

+ → R, Lagrangian and proxy-Lagrangian
ηf , ηλ ∈ R+, learning rates

1: Let h0 = argminγ∈R L̃(γ, 0) ▷ Initial constant “guess”
2: Initialize f ← h0

3: Initialize λ← 0
4: for t ∈ {1, . . . , T} do
5: Let gi =

∂L̃(f(xi),λ)
∂f(xi)

▷ Gradient of proxy-Lagrangian w.r.t. model

6: Let ∆ = ∂L(f(xi),λ)
∂λ ▷ Gradient of Lagrangian w.r.t. multipliers

7: Let ht = argminht∈H
∑N

i=1 (−gi − ht(xi))
2

▷ Fit base learner
8: Update f ← f + ηfht ▷ Gradient descent
9: Update λ← (λ+ ηλ∆)+ ▷ Projected gradient ascent

10: return h0, . . . , hT

enforcing our proxy-constraints and not necessarily the original ones. Thus, following Cotter et al.
(2019b), we adopt a non-zero sum two-player game formulation where the descent step for the model
player uses the proxy-Lagrangian L̃ and the ascent step for the λ-player uses the Lagrangian L with
the original constraints. The FairGBM training process (Algorithm 1) is as follows:

Descent step. The FairGBM descent step consists in minimizing the loss L̃ over the function space
H (Equation 7). That is, fitting a regression tree on the pseudo-residuals rt,i = −gt,i, where g is the

gradient of the proxy-Lagrangian, gt,i =
∂L̃(f,λ)
∂f(xi)

,

gt,i =

 ∂L
∂f(xi)

+ (m− 1)
∂L̃(S=j)

∂f(xi)

∑
k∈[m]\{j} λk if si = j

∂L
∂f(xi)

− λk
∂L̃(S=k)

∂f(xi)
if si = k ̸= j

(8)

where f(xi) = ft−1(xi), and j = argmaxs∈S L̃(S=s)(f) is the group with maximal proxy loss.

Ascent step. The FairGBM ascent step consists in maximizing the (original) Lagrangian L over the
multipliers λ ∈ Λ (Equation 2). Thus, each multiplier is updated by a simple gradient ascent step:

λt,i = λt−1,i + ηλ
∂L
∂λi

= λt−1,i + ηλci(f)

(9)

where i ∈ {1, . . . ,m}, m is the total number of inequality constraints, and ηλ ∈ R+ is the Lagrange
multipliers’ learning rate.

2.3.1 RANDOMIZED CLASSIFIER

The aforementioned FairGBM training process (Algorithm 1) converges to an approximately feasible
and approximately optimal solution with known bounds to the original CO problem, dubbed a “coarse-
correlated equilibrium” (Cotter et al., 2019b). This solution corresponds to a mixed strategy for the
model player, defined as a distribution over all ft iterates, t ∈ [1, T ]. That is, for each input x, we first
randomly sample t ∈ [1, T ], and then use ft to make the prediction for x, where ft =

∑t
m=0 ηfhm.

In practice, using solely the last iterate fT will result in a deterministic classifier that often achieves
similar metrics as the randomized classifier (Narasimhan et al., 2019), although it does not benefit
from the same theoretical guarantees (Appendix E goes into further detail on this comparison). There
are also several methods in the literature for reducing a randomized classifier to an approximate
deterministic one (Cotter et al., 2019a).

In the general case, using this randomized classifier implies sequentially training T separate models
(as performed by the EG method (Agarwal et al., 2018)), severely increasing training time (by a factor
of at least T ). When using an iterative training process (such as gradient descent), it only implies
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training a single model, but maintaining all T iterates (as performed by the TFCO method (Cotter
et al., 2019b)), severely increasing memory consumption. Crucially, when using gradient boosting,
each iterate contains all previous iterates. Therefore, a GBDT randomized classifier can be fully
defined by maintaining solely the last iterate, carrying no extra memory consumption nor significant
extra training time when compared with a vanilla GBDT classifier.

To summarize, FairGBM is the result of employing the proxy Lagrangian CO method with cross-
entropy-based proxies of fairness constraints, resulting in an efficient randomized classifier with
known optimality and feasibility bounds.

3 EXPERIMENTS

We implemented FairGBM1 as a fork from the open-source Microsoft LightGBM implementation.
The LightGBM algorithm (Ke et al., 2017) is a widely popular high performance GBDT implementa-
tion in C++, with a high-level Python interface for ease-of-use. This algorithm in particular builds
on top of the standard GBDT framework by introducing gradient-based one-side sampling (GOSS)
and exclusive feature bundling, both aimed at decreasing training and inference time. Although the
FairGBM framework (Algorithm 1) could be applied to any gradient boosting algorithm, we choose
to implement it on top of LightGBM due to its excellent scalability. Additionally, although our
experiments focus on binary sensitive attributes, FairGBM can handle multiple sub-groups.

We validate our method on five large-scale public benchmark datasets, popularly known as folktables
datasets, as well as on a real-world financial services case-study. While the folktables datasets provide
an easily reproducible setting under common literature objectives and constraints, the real-world
scenario poses a distinct set of challenges that are seldom discussed in the fairness literature, from
highly imbalanced data to tight constraints on the maximum number of positive predictions.

We compare FairGBM with a set of constrained optimization baselines from the Fair ML literature.
Fairlearn EG (Agarwal et al., 2018) is a state-of-the-art method based on the reduction of CO to a
cost-sensitive learning problem. It produces a randomized binary classifier composed of several base
classifiers. Fairlearn GS (Agarwal et al., 2018) is a similar method that instead uses a grid search
over the constraint multipliers λ, and outputs a single (deterministic) classifier that achieves the best
fairness-performance trade-off. RS Reweighing is a variation of GS that instead casts the choice of
multipliers λ as another model hyperparameter, which will be selected via Random Search (RS) —
this should increase variability of trade-offs. Both EG, GS and RS are trained using LightGBM as the
base algorithm, and both are implemented in the popular open-source fairlearn package (Bird et al.,
2020). Finally, we also show results for the standard unconstrained LightGBM algorithm.

It is well-known that the choice of hyperparameters affects both performance and fairness of trained
models (Cruz et al., 2021). To control for the variability of results when selecting different hyper-
parameters, we randomly sample 100 hyperparameter configurations of each algorithm. In the case
of EG and GS, both algorithms already fit n base estimators as part of a single training procedure.
Hence, we run 10 trials of EG and GS, each with a budget of n = 10 iterations, for a total budget
of 100 models trained (leading to an equal budget for all algorithms). To calculate the statistical
mean and variance of each algorithm, we perform bootstrapping over the trained models (Efron
& Tibshirani, 1994). Each bootstrap trial consists of k = 20 random draws from the pool of
n = 100 trained models (randomly select 20%). The best performing model (the maximizer of
[α · performance + (1− α) · fairness]) of each trial on validation data is then separately selected.
This process was repeated for 1000 trials to obtain both variance (Tables 2 and A2–A6) and confidence
intervals (Figures 2b, A2b and A1). All experiments (both FairGBM and baselines) can be easily
reproduced with the code provided in the supplementary materials4.

3.1 DATASETS

The folktables datasets were put forth by Ding et al. (2021) and are derived from the American
Community Survey (ACS) public use microdata sample from 2018. Each of the five datasets poses a
distinct prediction task, and contains a different set of demographic features (e.g., , age, marital status,
education, occupation, race, gender). Notably, the ACSIncome dataset (1.6M rows) is a recreated
modern-day version of the popular 1994 UCI-Adult dataset (Dua & Graff, 2017) (50K rows), which
has been widely used in ML research papers over the years. On this task, the goal (label) is to
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Figure 2: [ACSIncome] Left: scatter plot showing fairness and performance of 100 trained models of
each algorithm, evaluated on validation data. EG and GS show only 10 markers, as each run already
trains 10 models itself. Right: plot of best test-set fairness-accuracy trade-offs per algorithm (models
selected on validation data). Lines show the mean value, and shades show 95% confidence intervals.
FairGBM (blue) achieves a statistically significant superior trade-off for all α ∈ [0.00, 0.99].

predict whether US working adults’ yearly income is above $50K. Due to space constraints, we focus
on empirical results on the ACSIncome dataset, while the remaining four folktables datasets are
analyzed in Appendix A. We use the same performance and fairness metrics for all folktables datasets:
maximizing global accuracy, while equalizing group false negative rate (FNR) over different binary
gender groups, also known as equality of opportunity (Hardt et al., 2016). Each task is randomly split
in training (60%), validation (20%), and test (20%) data.

The Account Opening Fraud (AOF) dataset, our real-world case-study, spans an 8-month period
of (anonymized) data collection, containing over 500K instances. Specifically, pertaining to an
online bank account application form, which also grants access to a credit line. As fraudsters are
in the minority relative to legitimate applicants, our data is highly imbalanced, with only 1% fraud
prevalence. This poses a distinct set of challenges and requirements for model evaluation. For
example, as 99% accuracy can be trivially achieved by a constant classifier that predicts the negative
class, the target performance metric is not accuracy but true positive rate (TPR) at a given false
positive rate (FPR). In the AOF case, a business requirement dictates that the model must not wrongly
block more than 5% of legitimate customers, i.e., maximum 5% FPR. This type of requirement is
arguably commonplace in production ML systems (Ackermann et al., 2018; Jesus et al., 2022). See
Appendix D for details on how we operate FairGBM at arbitrary ROC points. Moreover, for the
AOF case we target FPR equality among individuals of different age-groups (preventing ageism). As
this task is punitive (a positive prediction leads to a negative outcome — denied account opening), a
model is considered unfair if it disproportionately blocks legitimate customers of a specific protected
group (given by that group’s FPR). Further details on the AOF dataset are provided in Appendix B.

3.2 RESULTS ON THE folktables DATASETS

Figure 2a shows a scatter plot of the fairness-accuracy results in the validation set for models
trained on the ACSIncome dataset. Note that the x axis spans a small accuracy range, as all models
consistently achieve high performance on this task. Figure 2b shows a plot of the best attainable trade-
off for each model type (results obtained with bootstrapping as previously described). Importantly,
for all trade-off choices α ∈ [0.00, 0.99], the FairGBM algorithm dominates all other methods on
the scalarized metric. Only when disregarding fairness completely (α = 1.0), do LightGBM, EG,
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Algorithm
Trade-off α = 0.75 Run-time

Validation Test Total (h) RelativeFair. (%) Perf. (%) Fair. (%) Perf. (%)
ACSIncome dataset

FairGBM 99.5± 0.83 81.7± 0.06 99.3± 0.89 81.7± 0.08 9.9 x2.1
LightGBM 75.0± 3.41 81.1± 0.87 74.6± 3.57 81.1± 0.88 4.6 baseline
GS 66.4± 1.53 81.8± 0.14 65.8± 1.39 81.8± 0.14 43.8 x9.6
RS 41.4± 26.6 77.5± 3.04 41.5± 26.5 77.5± 3.06 37.1 x8.1
EG 94.4± 0.33 81.6± 0.15 93.8± 0.13 81.6± 0.17 99.4 x21.7

AOF dataset

FairGBM 89.3± 4.62 65.9± 1.33 87.5± 3.36 65.9± 1.64 3.5 x2.4
LightGBM 58.0± 9.39 61.7± 2.68 66.6± 14.9 61.1± 2.86 1.4 baseline
GS 98.5± 1.00 23.6± 3.45 98.4± 1.67 23.7± 3.64 21.4 x14.7
RS 84.0± 19.3 36.9± 8.43 84.6± 20.9 37.4± 8.89 10.3 x7.1

Table 2: Mean and standard deviation of results on the ACSIncome (top rows) and AOF (bottom
rows) datasets, with the model-selection trade-off set as α = 0.75. For each row, we select the model
that maximizes [α · performance + (1− α) · fairness] measured in validation, and report results on
both validation and test data. See related Tables A2 and A1 for results with other trade-off choices.

and GS achieve similar results to FairGBM (differences within statistical insignificance). The RS
algorithm suffers from severe lack of consistency, with most models being extremely unfair.

Table 2 shows another view over the same underlying results, but with a specific fairness-accuracy
trade-off chosen (α = 0.75 used for model selection), and displaying performance and fairness
results instead of the scalarized objective. Table A2 shows ACSIncome results for two other trade-off
choices: α ∈ {0.50, 0.95}. Among all tested algorithms, FairGBM has the lowest average constraint
violation for all three studied values of α on the ACSIncome dataset (p < 0.01 for all pair-wise
comparisons), while achieving better performance than RS, and similar performance (differences are
not statistically significant) to LightGBM, GS, and EG — i.e., FairGBM models are Pareto dominant
over the baselines. The EG algorithm follows, also achieving high performance and high fairness,
although significantly behind FairGBM on the latter (p < 0.01). At the same time, the GS and
RS Reweighing algorithms achieve a surprisingly low fairness on this dataset, signalling that their
ensembled counterpart (the EG algorithm) seems better fitted for this setting. As expected, fairness
for the unconstrained LightGBM algorithm is considerably lower than that of FairGBM or EG.

A similar trend is visible on the other four folktables datasets (see Figure A1 and Tables A3–A6).
FairGBM consistently achieves the best fairness-accuracy trade-offs among all models, either isolated
(ACSIncome and ACSEmployment), tied with EG (ACSTravelTime), or tied with both EG and GS
(ACSMobility and ACSPublicCoverage). Collectively, EG is arguably the strongest CO baseline,
followed by GS, and then RS. However, the total time taken to train all FairGBM models is under a
tenth of the time taken to train all EG models (see rightmost columns of Table 2); and EG also requires
keeping tens of models in memory (n = 10 in our experiments), straining possible scalability.

3.3 RESULTS ON THE ACCOUNT OPENING FRAUD DATASET

While most models achieve high performance on the ACSIncome dataset, on AOF we see a signifi-
cantly wider range of performance values (compare AOF plot in Figure A2a with ACSIncome plot
in Figure 2a). Moreover, the unconstrained LightGBM algorithm in this setting shows significant
average unfairness, achieving its peak performance at approximately 33% fairness.

On the AOF test set, FairGBM dominates LightGBM on both fairness and performance for the
α = 0.5 and α = 0.75 trade-offs, while achieving superior fairness with statistically insignificant
performance differences on the α = 0.95 trade-off (results for all three trade-offs in Table A1).
Remaining baselines achieve high fairness at an extreme performance cost when compared to
FairGBM. For example, on α = 0.75 (Table 2), GS achieves near perfect fairness (98.4± 1.67) but
catches only 36% of the fraud instances that FairGBM catches (23.7/65.9 = 0.36), while taking 6
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times longer to train (14.7/2.4 = 6.1). In fact, FairGBM significantly extends the Pareto frontier of
attainable trade-offs when compared to any other model in the comparison (see Figure A2b).

Note that the EG method was excluded from the comparison on the AOF dataset as it has critical
incompatibilities with this real-world setting. Importantly, it produces a randomized binary classifier
that implicitly uses a 0.50 decision threshold. This is optimal to maximize accuracy – which is trivial
on AOF due to its extreme class imbalance – but severely sub-optimal to maximize TPR. Due to lack
of real-valued score predictions, neither can we compute a score threshold after training to maximize
TPR on the model’s predictions, nor can we fulfill the 5% FPR business constraint. Nonetheless, EG
is still part of the comparison on the five folktables datasets.

4 RELATED WORK

Prior work on algorithmic fairness can be broadly divided into three categories: pre-processing,
in-processing, and post-processing; depending on whether it acts on the training data, the training
process, or the model’s predictions, respectively.

Pre-processing methods aim to modify the input data such that any model trained on it would
no longer exhibit biases. This is typically achieved either by (1) creating a new representation U
of the features X that does not exhibit correlations with the protected attribute S (Zemel et al.,
2013; Edwards & Storkey, 2016), or (2) by altering the label distribution Y according to some
heuristic (Fish et al., 2016; Kamiran & Calders, 2009) (e.g., equalizing prevalence across sub-groups
of the population). Although compatible with any downstream task, by acting on the beginning of the
ML pipeline these methods may not be able to guarantee fairness on the end model. Moreover, recent
empirical comparisons have shown that pre-processing methods often lag behind in-processing and
post-processing methods (Ding et al., 2021).

In-processing methods alter the learning process itself in order to train models that make fairer
predictions. There are a wide variety of approaches under this class of methods: training under
fairness constraints (Zafar et al., 2017; Agarwal et al., 2018; Cotter et al., 2019b), using a loss
function that penalizes unfairness (Fish et al., 2016; Iosifidis & Ntoutsi, 2019; Ravichandran et al.,
2020), or training with an adversary that tries to predict protected-group membership (Grari et al.,
2019). The main shortcoming of in-processing methods lies in their selective compatibility with
particular algorithms or families of algorithms. As a case in point, there is currently no constrained
optimization method tailored for the GBDT algorithm, besides the one present in this work. However,
the state-of-the-art results for numerous tabular data tasks are currently held by boosting-based
models (Shwartz-Ziv & Armon, 2021). AdaFair (Iosifidis & Ntoutsi, 2019) is a bias mitigation
method for the AdaBoost algorithm (Freund & Schapire, 1996), a similar method to GBDT. However,
we did not consider it as a direct baseline in this work as it is only compatible with the equal odds
fairness metric (Hardt et al., 2016), and not with equal opportunity or predictive equality (used in
our experiments). Moreover, this method lacks any theoretical guarantees, employing a series of
heuristics used to change the weights of samples from underprivileged groups.

Post-processing methods alter the model’s predictions to fulfill some statistical measure of fairness.
In practice, this is done by (1) shifting the decision boundary for specific sub-groups (Hardt et al.,
2016; Fish et al., 2016), or by (2) randomly classifying a portion of individuals of the underprivileged
group (Kamiran et al., 2012; Pleiss et al., 2017). Methods based on shifting the decision-boundary
have the clear advantage of achieving 100% fairness in the data where they are calibrated (training
or validation data), while also being compatible with any score-based classifier. However, post-
processing methods can be highly sub-optimal (Woodworth et al., 2017), as they act on the model
after it was learned. Moreover, they can lead to higher performance degradation when compared to
in-processing methods (Ding et al., 2021).

5 CONCLUSION

We presented FairGBM, a dual ascent learning framework under fairness constraints specifically
tailored for gradient boosting. To enable gradient-based optimization we propose differentiable
proxies for popular fairness metrics that are able to attain state-of-the-art fairness-performance
trade-offs on tabular data. When compared with general-purpose constrained optimization methods,
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FairGBM is more consistent across datasets, and typically achieves higher fairness for the same level
of performance. Crucially, FairGBM does not require significant extra computational resources, while
related CO algorithms considerably increase training time and/or memory consumption. Finally, we
enable fairness constraint fulfillment at a specified ROC point or with a fixed budget for positive
predictions, a common requirement in real-world high-stakes settings.

ACKNOWLEDGMENTS

The authors thank the International Max Planck Research School for Intelligent Systems (IMPRS-IS)
for supporting André F. Cruz during part of this research.

The project CAMELOT (reference POCI-01-0247-FEDER-045915) leading to this work is co-
financed by the ERDF - European Regional Development Fund through the Operational Program for
Competitiveness and Internationalisation - COMPETE 2020, the North Portugal Regional Operational
Program - NORTE 2020 and by the Portuguese Foundation for Science and Technology - FCT under
the CMU Portugal international partnership.

REFERENCES

Klaus Ackermann, Joe Walsh, Adolfo De Unánue, Hareem Naveed, Andrea Navarrete Rivera, Sun-
Joo Lee, Jason Bennett, Michael Defoe, Crystal Cody, Lauren Haynes, et al. Deploying machine
learning models for public policy: A framework. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 15–22, 2018.

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna Wallach. A
reductions approach to fair classification. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 60–69. PMLR, 10–15 Jul 2018. URL http://proceedings.mlr.
press/v80/agarwal18a.html.

Alekh Agarwal, Miroslav Dudik, and Zhiwei Steven Wu. Fair regression: Quantitative definitions and
reduction-based algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 120–129. PMLR, 09–15 Jun 2019.

Julia Angwin, Jeff Larson, Lauren Kirchner, and Surya Mattu. Machine bias:
There’s software used across the country to predict future criminals. and
it’s biased against blacks. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, May 2016.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning. fairml-
book.org, 2019. http://www.fairmlbook.org.

Robert Bartlett, Adair Morse, Richard Stanton, and Nancy Wallace. Consumer-Lending Discrimina-
tion in the FinTech Era. Technical report, National Bureau of Economic Research, 2019.

Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya
Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta, Aleksandra Mojsilovic, Seema Nagar,
Karthikeyan Natesan Ramamurthy, John Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder
Singh, Kush R. Varshney, and Yunfeng Zhang. AI Fairness 360: An extensible toolkit for
detecting, understanding, and mitigating unwanted algorithmic bias, October 2018. URL https:
//arxiv.org/abs/1810.01943.

Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan,
Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A toolkit for as-
sessing and improving fairness in AI. Technical Report MSR-TR-2020-32, Microsoft,
May 2020. URL https://www.microsoft.com/en-us/research/publication/
fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/.

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man
is to computer programmer as woman is to homemaker? debiasing word embeddings. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), NIPS, pp. 4349–4357. Curran
Associates, Inc., 2016.

10

http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.fairmlbook.org
https://arxiv.org/abs/1810.01943
https://arxiv.org/abs/1810.01943
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/


Published as a conference paper at ICLR 2023

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

Leo Breiman. Classification And Regression Trees. Wadsworth, 1984.

Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the predictive validity of the compas
risk and needs assessment system. Criminal Justice and Behavior, 36(1):21–40, 2009.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In FAT* ’18, volume 81, pp. 77–91. PMLR, 23–24 Feb 2018.

L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Fair classification with
noisy protected attributes: A framework with provable guarantees. In International Conference on
Machine Learning, pp. 1349–1361. PMLR, 2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR, abs/1603.02754,
2016. URL http://arxiv.org/abs/1603.02754.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Al-
gorithmic Decision Making and the Cost of Fairness. In Proc. of the 23rd ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining - KDD ’17, pp. 797–
806, New York, New York, USA, jan 2017. ACM Press. ISBN 9781450348874. URL
http://arxiv.org/abs/1701.08230http://dx.doi.org/10.1145/3097983.
309809http://dl.acm.org/citation.cfm?doid=3097983.3098095.

Andrew Cotter, Maya Gupta, and Harikrishna Narasimhan. On making stochastic classifiers
deterministic. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
5fc34ed307aac159a30d81181c99847e-Paper.pdf.

Andrew Cotter, Heinrich Jiang, Maya Gupta, Serena Wang, Taman Narayan, Seungil You, and
Karthik Sridharan. Optimization with non-differentiable constraints with applications to fairness,
recall, churn, and other goals. Journal of Machine Learning Research, 20(172):1–59, 2019b. URL
http://jmlr.org/papers/v20/18-616.html.

André F. Cruz, Pedro Saleiro, Catarina Belém, Carlos Soares, and Pedro Bizarro. Promoting
fairness through hyperparameter optimization. In 2021 IEEE International Conference on Data
Mining (ICDM), pp. 1036–1041. IEEE, 2021. doi: 10.1109/ICDM51629.2021.00119. URL
https://doi.org/10.1109/ICDM51629.2021.00119.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair
machine learning. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith. Show your
work: Improved reporting of experimental results. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pp. 2185–2194, Hong Kong, China, November
2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1224. URL https:
//aclanthology.org/D19-1224.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. URL http://archive.
ics.uci.edu/ml.

Harrison Edwards and Amos J. Storkey. Censoring representations with an adversary. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1511.05897.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

Benjamin Fish, Jeremy Kun, and Ádám Dániel Lelkes. A confidence-based approach for balancing
fairness and accuracy. CoRR, abs/1601.05764, 2016. URL http://arxiv.org/abs/1601.
05764.

11

http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1701.08230 http://dx.doi.org/10.1145/3097983.309809 http://dl.acm.org/citation.cfm?doid=3097983.3098095
http://arxiv.org/abs/1701.08230 http://dx.doi.org/10.1145/3097983.309809 http://dl.acm.org/citation.cfm?doid=3097983.3098095
https://proceedings.neurips.cc/paper/2019/file/5fc34ed307aac159a30d81181c99847e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5fc34ed307aac159a30d81181c99847e-Paper.pdf
http://jmlr.org/papers/v20/18-616.html
https://doi.org/10.1109/ICDM51629.2021.00119
https://aclanthology.org/D19-1224
https://aclanthology.org/D19-1224
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1511.05897
http://arxiv.org/abs/1511.05897
http://arxiv.org/abs/1601.05764
http://arxiv.org/abs/1601.05764


Published as a conference paper at ICLR 2023

Yoav Freund and Robert E Schapire. Experiments with a new boosting algorithm. In Proceedings of
the Thirteenth International Conference on International Conference on Machine Learning, pp.
148–156, 1996.

Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin Detyniecki. Fair adversarial gradient tree
boosting. In 2019 IEEE International Conference on Data Mining (ICDM), pp. 1060–1065, 2019.
doi: 10.1109/ICDM.2019.00124.

Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in su-
pervised learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
9d2682367c3935defcb1f9e247a97c0d-Paper.pdf.

Vasileios Iosifidis and Eirini Ntoutsi. Adafair: Cumulative fairness adaptive boosting. CoRR,
abs/1909.08982, 2019. URL http://arxiv.org/abs/1909.08982.

Sérgio Jesus, José Pombal, Duarte Alves, André F. Cruz, Pedro Saleiro, Rita P. Ribeiro, João Gama,
and Pedro Bizarro. Turning the tables: Biased, imbalanced, dynamic tabular datasets for ML
evaluation. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. URL https://openreview.net/forum?id=UrAYT2QwOX8.

Faisal Kamiran and Toon Calders. Classifying without discriminating. In 2009 2nd International
Conference on Computer, Control and Communication, pp. 1–6, 2009. doi: 10.1109/IC4.2009.
4909197.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware
classification. In 2012 IEEE 12th International Conference on Data Mining, pp. 924–929, 2012.
doi: 10.1109/ICDM.2012.45.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

Harikrishna Narasimhan, Andrew Cotter, and Maya Gupta. Optimizing generalized rate metrics with
three players. Advances in Neural Information Processing Systems, 32, 2019.

J v Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.
doi: 10.1007/BF01448847.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and
calibration. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf.

Srinivasan Ravichandran, Drona Khurana, Bharath Venkatesh, and Narayanan Unny Edakunni.
Fairxgboost: Fairness-aware classification in xgboost. CoRR, abs/2009.01442, 2020. URL
https://arxiv.org/abs/2009.01442.

Pedro Saleiro, Benedict Kuester, Loren Hinkson, Jesse London, Abby Stevens, Ari Anisfeld,
Kit T Rodolfa, and Rayid Ghani. Aequitas: A bias and fairness audit toolkit. arXiv preprint
arXiv:1811.05577, 2018.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. arXiv
preprint arXiv:2106.03253, 2021.

Divya Tomar and Sonali Agarwal. A survey on data mining approaches for healthcare. International
Journal of Bio-Science and Bio-Technology, 5(5):241–266, 2013.

12

https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf
http://arxiv.org/abs/1909.08982
https://openreview.net/forum?id=UrAYT2QwOX8
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf
https://arxiv.org/abs/2009.01442


Published as a conference paper at ICLR 2023

Xin Tong. A plug-in approach to neyman-pearson classification. Journal of Machine Learning
Research, 14(56):3011–3040, 2013. URL http://jmlr.org/papers/v14/tong13a.
html.

Alexander Vargo, Fan Zhang, Mikhail Yurochkin, and Yuekai Sun. Individually fair gradient boosting.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=JBAa9we1AL.

Blake Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian, and Nathan Srebro. Learning non-
discriminatory predictors. In Satyen Kale and Ohad Shamir (eds.), Proceedings of the 2017
Conference on Learning Theory, volume 65 of Proceedings of Machine Learning Research, pp.
1920–1953. PMLR, 07–10 Jul 2017. URL https://proceedings.mlr.press/v65/
woodworth17a.html.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P. Gummadi. Fairness
Constraints: Mechanisms for Fair Classification. In Aarti Singh and Jerry Zhu (eds.), Proceed-
ings of the 20th International Conference on Artificial Intelligence and Statistics, volume 54
of Proceedings of Machine Learning Research, pp. 962–970. PMLR, 20–22 Apr 2017. URL
https://proceedings.mlr.press/v54/zafar17a.html.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair repre-
sentations. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th In-
ternational Conference on Machine Learning, volume 28 of Proceedings of Machine Learn-
ing Research, pp. 325–333, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https:
//proceedings.mlr.press/v28/zemel13.html.

13

http://jmlr.org/papers/v14/tong13a.html
http://jmlr.org/papers/v14/tong13a.html
https://openreview.net/forum?id=JBAa9we1AL
https://openreview.net/forum?id=JBAa9we1AL
https://proceedings.mlr.press/v65/woodworth17a.html
https://proceedings.mlr.press/v65/woodworth17a.html
https://proceedings.mlr.press/v54/zafar17a.html
https://proceedings.mlr.press/v28/zemel13.html
https://proceedings.mlr.press/v28/zemel13.html


Published as a conference paper at ICLR 2023

A ADDITIONAL RESULTS

This section displays results on the four folktables datasets that were omitted from the main body:
ACSEmployment, ACSMobility, ACSTravelTime, and ACSPublicCoverage (Ding et al., 2021). Each
dataset poses a distinct prediction task: ACSEmployment (2.3M rows) relates to employment status
prediction, ACSMobility (0.6M rows) relates to prediction of address changes, ACSTravelTime
(1.4M rows) relates to prediction of the length of daily work commute, and ACSPublicCoverage
(1.1M rows) relates to prediction of public health insurance coverage. Additionally, we display extra
plots and results for other trade-off choices on the ACSIncome and AOF datasets.
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Figure A1: Plot of best test-set fairness-accuracy trade-offs per algorithm (models selected on
validation data), on four folktables datasets. Lines show the mean value, and shades show 95%
confidence intervals.

Figure A1 shows plots of the test-set α-weighted metric attainable by each algorithm as a function
of α ∈ [0, 1], on each folktables dataset (model-selection based on validation results). Results
follow a similar trend to those seen on the ACSIncome dataset (Figure 2b): FairGBM consistently
achieves the top spot, either isolated (ACSEmployment and ACSIncome) or tied with other methods
on part of the trade-off spectrum (ACSMobility, ACSPublicCoverage and ACSTravelTime). EG
achieves competitive trade-offs as well, although not as consistently across datasets, and at a high
CPU training cost. GS ties with EG and FairGBM for the best trade-offs on the ACSMobility and
ACSPublicCoverage datasets. Detailed fairness and performance results for all folktables datasets
(for α ∈ {0.50, 0.75, 0.95}) are shown in Tables A2–A6.
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Figure A2: [AOF dataset] Left: scatter plot showing fairness and performance of 100 trained models
of each algorithm, evaluated on validation data. GS shows only 10 markers, as each run already
trains 10 models itself. Right: plot of best test-set fairness-accuracy trade-offs per algorithm (models
selected on validation data). Lines show the mean value, and shades show 95% confidence intervals.
FairGBM (blue) achieves a statistically significant superior trade-off for all α ∈ [0.05, 0.98].

Account Opening Fraud (AOF)

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 92.2± 4.19 64.8± 2.54 90.1± 4.51 64.7± 2.59
LightGBM 70.2± 7.92 55.8± 3.97 78.4± 9.89 55.8± 3.36
GS 98.9± 0.82 23.4± 3.71 98.7± 1.37 23.4± 3.87
RS 95.3± 3.55 31.2± 4.31 96.1± 3.47 31.3± 4.53

Trade-off α = 0.75

FairGBM 89.3± 4.62 65.9± 1.33 87.5± 3.36 65.9± 1.64
LightGBM 58.0± 9.39 61.7± 2.68 66.6± 14.9 61.1± 2.86
GS 98.5± 1.0 23.6± 3.45 98.4± 1.67 23.7± 3.64
RS 84.0± 19.3 36.9± 8.43 84.6± 20.9 37.4± 8.89

Trade-off α = 0.95

FairGBM 80.0± 9.79 66.6± 0.88 80.2± 9.13 66.6± 1.06
LightGBM 33.7± 1.70 67.6± 0.47 36.0± 1.29 67.3± 1.01
GS 98.5± 0.99 23.6± 3.44 98.3± 1.74 23.8± 3.51
RS 81.5± 21.2 37.6± 9.15 82.2± 23.2 38.2± 9.64

Table A1: Mean and standard deviation of results on the AOF dataset, for three different
choices of model-selection trade-off: α ∈ {0.50, 0.75, 0.95}. Model selection metric was
[α · performance + (1− α) · fairness]. The best model is selected on validation data, and results are
reported on both validation and test data.

Figure A2 shows a scatter plot and a plot of best attainable trade-offs on the AOF dataset. When
compared to the ACSIncome results (Figure 2), we can see a significantly wider range of attainable
performance and fairness values, arguably making it a more challenging but more interesting task.
These differences further motivate our focus on a real-world setting.
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ACSIncome

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 99.6± 0.73 81.6± 0.08 99.4± 0.74 81.7± 0.09
LightGBM 75.6± 3.28 80.8± 0.80 75.5± 3.32 80.8± 0.80
GS 66.4± 1.49 81.7± 0.19 65.9± 1.36 81.8± 0.20
RS 42.3± 25.8 77.0± 3.70 42.4± 25.8 77.0± 3.73
EG 94.4± 0.32 81.6± 0.16 93.8± 0.11 81.6± 0.18

Trade-off α = 0.75

FairGBM 99.5± 0.83 81.7± 0.06 99.3± 0.89 81.7± 0.08
LightGBM 75.0± 3.41 81.1± 0.87 74.6± 3.57 81.1± 0.88
GS 66.4± 1.53 81.8± 0.14 65.8± 1.39 81.8± 0.14
RS 41.4± 26.6 77.5± 3.04 41.5± 26.5 77.5± 3.06
EG 94.4± 0.33 81.6± 0.15 93.8± 0.13 81.6± 0.17

Trade-off α = 0.95

FairGBM 98.7± 1.07 81.8± 0.06 98.5± 1.22 81.8± 0.06
LightGBM 71.2± 0.30 81.9± 0.04 70.8± 0.34 82.0± 0.05
GS 66.3± 1.54 81.8± 0.14 65.8± 1.40 81.8± 0.14
RS 38.3± 25.6 77.8± 2.96 38.4± 25.6 77.8± 2.97
EG 94.4± 0.36 81.6± 0.15 93.9± 0.13 81.6± 0.16

Table A2: Mean and standard deviation of results on the ACSIncome dataset.

ACSEmployment

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 99.6± 0.26 83.1± 0.07 99.4± 0.30 83.0± 0.08
LightGBM 91.8± 0.58 82.1± 0.22 91.4± 0.50 82.0± 0.25
GS 73.9± 0.85 83.1± 0.13 74.7± 0.84 83.1± 0.14
RS 65.2± 25.6 81.6± 2.93 65.3± 25.5 81.5± 2.95
EG 87.6± 1.11 83.0± 0.16 88.4± 1.12 83.0± 0.17

Trade-off α = 0.75

FairGBM 99.6± 0.29 83.1± 0.03 99.4± 0.31 83.1± 0.04
LightGBM 91.4± 0.55 82.3± 0.17 91.1± 0.48 82.2± 0.19
GS 73.8± 1.01 83.2± 0.06 74.7± 0.99 83.1± 0.07
RS 65.1± 25.6 81.6± 2.92 65.2± 25.5 81.5± 2.93
EG 87.6± 1.11 83.1± 0.15 88.4± 1.12 83.0± 0.16

Trade-off α = 0.95

FairGBM 99.5± 0.36 83.1± 0.02 99.4± 0.40 83.1± 0.02
LightGBM 91.0± 0.15 82.4± 0.01 90.8± 0.11 82.3± 0.01
GS 73.7± 1.00 83.2± 0.06 74.7± 0.98 83.1± 0.07
RS 65.0± 25.5 81.6± 2.93 65.1± 25.4 81.6± 2.94
EG 86.8± 1.65 83.2± 0.06 87.7± 1.67 83.1± 0.06

Table A3: Mean and standard deviation of results on the ACSEmployment dataset.
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ACSMobility

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 95.0± 1.36 75.8± 0.74 96.2± 2.44 75.7± 0.74
LightGBM 81.1± 1.44 76.1± 0.31 82.3± 1.03 76.1± 0.30
GS 92.4± 2.46 76.0± 0.89 95.0± 2.92 75.8± 0.94
RS 60.0± 25.3 75.9± 2.27 60.8± 26.5 75.8± 2.26
EG 96.3± 2.50 76.5± 0.13 94.6± 2.11 76.4± 0.12

Trade-off α = 0.75

FairGBM 93.9± 1.59 76.4± 0.28 94.4± 1.85 76.3± 0.28
LightGBM 81.0± 1.50 76.1± 0.09 82.3± 1.02 76.1± 0.08
GS 92.0± 2.18 76.2± 0.68 94.6± 2.67 76.0± 0.72
RS 60.0± 25.3 75.9± 2.25 60.8± 26.5 75.8± 2.24
EG 96.3± 2.52 76.5± 0.13 94.7± 2.09 76.4± 0.11

Trade-off α = 0.95

FairGBM 92.1± 1.42 76.7± 0.09 93.7± 1.19 76.5± 0.08
LightGBM 79.9± 1.40 76.2± 0.07 81.7± 1.07 76.2± 0.06
GS 90.8± 2.32 76.4± 0.11 93.7± 2.66 76.3± 0.12
RS 59.8± 25.4 76.0± 2.22 60.5± 26.6 75.9± 2.20
EG 96.0± 2.90 76.6± 0.11 94.6± 2.02 76.4± 0.09

Table A4: Mean and standard deviation of results on the ACSMobility dataset.

ACSTravelTime

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 98.2± 1.28 66.7± 0.99 98.3± 1.39 66.6± 0.98
LightGBM 93.6± 0.68 65.8± 0.59 93.1± 0.59 65.8± 0.64
GS 72.8± 1.23 66.6± 0.52 73.0± 0.98 66.5± 0.52
RS 52.5± 20.6 64.3± 2.19 52.5± 20.6 64.3± 2.18
EG 96.1± 2.96 66.0± 0.81 96.1± 2.96 66.0± 0.78

Trade-off α = 0.75

FairGBM 97.7± 1.83 67.0± 0.71 97.6± 1.96 66.9± 0.71
LightGBM 92.5± 0.42 66.5± 0.24 92.4± 0.28 66.6± 0.24
GS 72.6± 1.26 66.7± 0.49 72.8± 1.01 66.6± 0.50
RS 52.1± 21.0 64.6± 1.85 52.1± 21.0 64.5± 1.84
EG 95.7± 3.06 66.2± 0.82 95.7± 3.05 66.2± 0.79

Trade-off α = 0.95

FairGBM 95.6± 4.72 67.2± 0.50 95.5± 4.64 67.2± 0.52
LightGBM 92.3± 0.33 66.6± 0.22 92.3± 0.27 66.6± 0.21
GS 72.3± 1.33 66.7± 0.45 72.6± 1.07 66.7± 0.46
RS 49.6± 20.9 64.8± 1.81 49.6± 21.0 64.7± 1.82
EG 94.3± 4.12 66.4± 0.77 94.2± 4.18 66.4± 0.74

Table A5: Mean and standard deviation of results on the ACSTravelTime dataset.
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ACSPublicCoverage

Algorithm Validation Test
Fair. (%) Perf. (%) Fair. (%) Perf. (%)

Trade-off α = 0.50

FairGBM 99.7± 0.47 79.9± 0.23 98.0± 0.65 80.0± 0.26
LightGBM 89.1± 2.04 78.4± 0.58 90.0± 2.05 78.5± 0.63
GS 96.2± 0.35 79.9± 0.12 97.6± 0.30 80.1± 0.15
RS 66.6± 24.8 78.4± 2.21 67.1± 25.7 78.5± 2.25
EG 98.7± 1.18 79.9± 0.23 98.9± 0.88 80.0± 0.23

Trade-off α = 0.75

FairGBM 99.5± 0.56 80.0± 0.17 97.9± 0.74 80.1± 0.19
LightGBM 88.5± 1.62 78.6± 0.41 89.4± 1.63 78.7± 0.45
GS 96.1± 0.40 80.0± 0.11 97.7± 0.26 80.1± 0.15
RS 66.5± 24.9 78.4± 2.18 67.1± 25.7 78.5± 2.21
EG 98.6± 1.30 79.9± 0.19 98.9± 0.93 80.0± 0.19

Trade-off α = 0.95

FairGBM 99.0± 0.96 80.1± 0.10 97.7± 1.24 80.2± 0.11
LightGBM 85.5± 1.22 79.1± 0.08 86.4± 1.23 79.3± 0.08
GS 96.0± 0.40 80.0± 0.12 97.6± 0.26 80.1± 0.15
RS 66.5± 24.9 78.5± 2.17 67.0± 25.7 78.5± 2.20
EG 98.4± 1.42 79.9± 0.15 98.8± 1.06 80.0± 0.16

Table A6: Mean and standard deviation of results on the ACSPublicCoverage dataset.

B DESCRIPTION OF ACCOUNT OPENING FRAUD DATASET
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(b) Fraud Rate by Age.

Figure A3: Plot of the variation of Fraud Rate depending on the month of the application and
applicant’s age. The plot also contains distribution of Age over all the applications in the dataset.

The Account Opening Fraud (AOF) dataset is an in-house dataset that comprises 8 months of data
from a real-world fraud detection task. Specifically, on the detection of fraudulent online bank
account opening applications in a large European consumer bank. In this setting, fraudsters attempt to
either impersonate someone via identity theft, or create a fictional individual in order to be approved
for a new bank account. After being granted access to a new bank account, the fraudster quickly
maxes out the line of credit, or uses the account to receive illicit payments. All costs are sustained by
the bank.

The temporal aspect of the dataset plays an important role, as oftentimes fraudsters adapt their
strategies over time to try to improve their success rate. This translates into considerable concept
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drift throughout the year (e.g., a model trained on 1-year-old data will perform poorly on recent data).
With this in mind, we split the AOF dataset temporally, using 6 months for training, 1 month for
validation, and 1 month for test, such that we train on the oldest data and test on the most recent. The
simpler strategy of randomly splitting in train/test/validation in this setting would not properly mimic
a real-world environment, and would lead to over-optimistic results.

Each instance (row) of the dataset represents an individual application. All of the applications were
made on an online platform, where explicit consent to store and process the gathered data was granted
by the applicant. Each instance is labeled after a few months of activity, as by then it is apparent
whether the account owner is fraudulent (positive label) or legitimate (negative label). A total of 67
features are stored for each applicant, 6 being categorical, 19 binary, and 42 numerical. Most features
represent aggregations over the original information and context of the application (e.g., count of the
number of applications in the last hour).

The prevalence of fraud varies between 0.85% and 1.5% during the eight month period (see Fig-
ure A3a). We observe that these values are higher for the later months, which were used as validation
(the 7th, or second-to-last month) and test (the 8th, or last month) data. Additionally, the distribution
of applications also changes from month to month, ranging from 9.5% on the lower end to 15%
on the higher end. The extremely high class imbalance (approximately 1 positive label for each 99
negative labels), the gradual change in fraud prevalence, together with naturally shifting consumer
patterns along 8 months of real-world data are examples of common real-world challenges that are
not often present in datasets from the fairness literature.

Due to the low fraud rate in the data, measuring accuracy of the models would lead to misleading
results. A trivial classifier that constantly outputs legitimate predictions would achieve an accuracy
close to 99%. To address this, a commonly used performance metric in the fraud detection industry is
the true positive rate (TPR, or Recall), as it reflects the percentage of fraud that was caught by the ML
model. Moreover, in order to keep attrition on legitimate customers low, a requirement of at most 5%
false positive rate (FPR) is used, i.e., at most 5% of legitimate (label negative) customers are wrongly
blocked from opening a bank account. Additionally, due to the punitive nature of the classification
setting (a false positive negates financial services to a legitimate applicant), we aim to balance false
positive rates between the different groups in the dataset.

As a protected attribute for this dataset, we selected the applicant’s age. Specifically, we divide
applicants into two groups: under 50 years old, and at or above 50 years old. There is a surprising but
clear relation between fraudulent applications and reported age, so we expect that fairness w.r.t. the
age group will make for a challenging setting. Figure A3b shows a plot of the age distribution, as
well as the variation of fraud rate over age values.

C DISCUSSION ON THE LIMITATIONS OF FAIRGBM

In this section, we discuss expected limitations of the proposed approach.

When compared with vanilla LightGBM, FairGBM requires approximately double the training time
(see Table 2). This compute overhead of FairGBM can be attributed to (1) the computation of the
proxy gradients relative to the constraint loss, and (2) the addition of an extra optimization step per
iteration – the ascent step.

From an application standpoint, FairGBM is specifically tailored for gradient boosting methods. This
contrasts with other bias mitigation methods in the literature such as EG (Agarwal et al., 2018),
which, despite having considerably slower runtime, are applicable to a wider range of classifier types
(all binary classifiers in the case of EG).

Despite discussing several choices for differentiable proxies for the Type 1 and Type 2 errors in
Section 2.2, our experiments only concern one of these proxies. As future work, we would like to
perform a more thorough study on the impact of different choices of differentiable proxies for the
step-wise function (e.g., sigmoid, hinge, or squared loss).

Moreover, FairGBM as it is devised in this work is limited to group-wise fairness metrics, and
incompatible with metrics from the individual fairness literature. In fact, individual fairness algorithms
tailored for GBM have been developed in related work Vargo et al. (2021). The BuDRO method
proposed by Vargo et al. is based on optimal transport optimization with Wasserstein distances, while
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our proposal fully relies on gradient-based optimization with the dual ascent method. A possible
extension of our method to a wider range of constraints that enables individual fairness is a topic we
aim to explore in future work.

D OPERATING FAIRGBM AT A SPECIFIC ROC POINT

Without fairness constraints, meeting a specific ROC operating point can be achieved by appropriately
thresholding the output of a classifier that learns to approximate the class probabilities: p(y = 1|x)
(Tong, 2013). That is the case of a classifier that is trained to minimize a proper scoring rule such as
binary cross-entropy.

However, when optimizing for the Lagrangian (Equation 7), we are no longer optimizing for a
classifier that approximates the true class probabilities. This is a key point that is often overlooked
in the constrained optimization literature. Namely, both L and L̃ have an implicit threshold when
evaluating constraint fulfillment: the 0.5 decision threshold, or 0.0 when considering the log-odds
(see Figure 1). In practice, FairGBM will be optimized to fulfill the constraints at this pre-defined
threshold, but constraint fulfillment may not (and likely will not) generalize to all thresholds. Indeed,
we could use any decision threshold during training, but it is impossible to know which threshold
would meet our ROC requirements beforehand.

We propose to solve this by introducing our ROC requirement as another in-training constraint. In
the AOF setting, this is achieved by introducing an additional constraint of global FPR ≤ 0.05. In
practice, instead of shifting the threshold to meet our target ROC operating point, we are shifting the
score distribution such that the 0.5 decision threshold corresponds to our target ROC point, enabling
constraint fulfillment at any attainable ROC point.

E RANDOMIZED CLASSIFIER vs LAST ITERATE
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Figure A4: Comparison between using the FairGBM randomized classifier (blue circles) or the
predictions of the last FairGBM iterate (orange crosses).

Figure A4 shows a comparison between using the randomized classifier predictions or solely the
last iterate predictions on the ACSIncome dataset. As mentioned in Section 2, the first approach
benefits from theoretical convergence guarantees, while the latter benefits from being a deterministic
classifier (which may be a requirement in some real-world settings). In practice, using the last iterate
version of FairGBM (which always uses all trees of the GBM ensemble) achieves similar results
to the randomized classifier version (which randomly picks the number of trees it will use for each
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prediction). The same trend is clear on the AOF dataset, and concurs with related work on randomized
classifiers by Cotter et al. (2019b).

F BACKGROUND ON GRADIENT BOOSTED DECISION TREES

A gradient boosting algorithm estimates a mapping f : X 7→ y that minimizes a loss function,

L(f) =
1

N

N∑
i=1

l(yi, f(xi)), (10)

where f is constrained to be a sum of base (weak) learners ht ∈ H. In the case of GBDT, these can
be shallow decision trees with fixed depth or fixed number of nodes:

f =

T∑
t=0

ηtht, (11)

where ηt is a step size parameter. Typically, h0 would be a constant function that minimizes L and
η0 = 1. Gradient boosting can then be understood as performing gradient descent on the space of
functions f . Each subsequent step, ht, being essentially a projection ontoH of the negative gradient
of the loss L w.r.t. f . In other words, the base learner whose predictions are as close as possible, in
the l2 sense, to the negative gradient2:

ht = argmin
h∈H

N∑
i=1

(−gt,i − h(xi))
2
, (12)

where gt,i are the gradients evaluated at the current iterate ft−1 =
∑t−1

m=0 ηmhm:

gt,i =

[
∂l(yi, f(xi))

∂f(xi)

]
f(xi)=ft−1(xi)

. (13)

Note that Equation 12 is equivalent to:

ht = argmin
ht∈H

N∑
i=1

[
gt,iht(xi) +

1

2
h2
t (xi)

]
. (14)

XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017) replace the approximation above
with a local quadratic one thus implementing the following second order step:

ht = argmin
ht∈H

N∑
i=1

[
gt,iht(xi) +

1

2
Hi,th

2
t (xi)

]
+Ω(ht), (15)

where Hi,t is the hessian of l w.r.t. f computed at the current iterate and Ω is a regularization term
penalizing complex base learners.

2In practice, a heuristic is used that builds the decision tree by greedily choosing a sequence of splitting
variables and splitting values that most decrease the value of the function to minimize
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G NOTATION

L the Lagrangian function, which uses the original constraints c; see Equation 2.
L̃ the proxy-Lagrangian function, which uses the proxy constraints c̃; see Equation 7.
c an inequality constraint function; it is deemed fulfilled if c(θ) ≤ 0; this function may be

non-differentiable; examples include a constraint on TPR parity or parity of any other
metric of the confusion matrix.

c̃ a proxy inequality constraint that serves as sub-differentiable proxy for the corresponding
constraint c; see Equation 5.

l an instance-wise loss function, i.e., l : Y × Ŷ 7→ R+, where Y is the set of possible
labels and Ŷ is the set of possible predictions; see green line in Figure 1.

l̃ a sub-differentiable proxy for an instance-wise loss function; see blue and purple lines in
Figure 1.

D a dataset of samples (x, y, s) ∈ D, where x ∈ X ⊆ Rn is the features, y ∈ Y ⊆ N0 is
the label, and s ∈ S ⊆ N0 is the sensitive attribute.

L(S=a) a predictive loss function measured over data samples with sensitive attribute value S = a,
{(x, y, s) : s = a, (x, y, s) ∈ D}; the subscript is omitted when measuring loss over the
whole dataset D; examples include the false-negative rate or the squared error loss.

L̃(S=a) a sub-differentiable proxy for a predictive loss function measured over data samples
with sensitive attribute value S = a, {(x, y, s) : s = a, (x, y, s) ∈ D}; the subscript is
omitted when measuring loss over the whole dataset D.

λi a Lagrange multiplier associated with constraint ci and proxy constraint c̃i.
F the space of strong learners.
H the space of weak learners.
f a strong learner.
h a weak learner.
S the range of random variable S; the letter S specifically is used for the sensitive attribute,

and S for the different values the sensitive attribute can take.

H REPRODUCIBILITY CHECKLIST

This section provides further details regarding implementation and hardware used for our experiments.
We follow the reproducibility checklist put forth by Dodge et al. (Dodge et al., 2019).

Regarding reported experimental results:

✓□ Description of computing infrastructure.
• ACSIncome and AOF experiments: Intel i7-8650U CPU, 32GB RAM.
• ACSEmployment, ACSMobility, ACSTravelTime, ACSPublicCoverage experiments:

each model trained in parallel on a cluster. Resources per training job: 1 vCPU core
(Intel Xeon E5-2695), 8GB RAM3.

✓□ Average run-time for each approach.
• Folder runtimes of the supp. materials4.

✓□ Details of train/validation/test splits.
• See Section 3.1, and data notebooks in folder notebooks of the supp. materials4.

✓□ Corresponding validation performance for each reported test result.
• Folder results of the supp. materials4.

✓□ A link to implemented code1.

Regarding hyperparameter search:
3These experiments were added as part of the paper rebuttal process, and thus required faster infrastructure

to meet the conference deadlines.
4https://github.com/feedzai/fairgbm/tree/supp-materials
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✓□ Bounds for each hyperparameter.
• Folder hyperparameters of the supp. materials4.

✓□ Hyperparameter configurations for best-performing models.
• Folder hyperparameters of the supp. materials4.

✓□ Number of hyperparameter search trials.
• LightGBM, FairGBM, and RS: 100 trials.
• EG and GS: 10 trials — each trial trains n = 10 separate base models, for a total

budget of 100 models trained (equal budget for all algorithms).
✓□ The method of choosing hyperparameter values.

• Random uniform sampling.
✓□ Expected validation performance.

• Folder others of the supp. materials4.
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