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Figure 1: Adversarial Training System for Tabular Data with Attack Propagation (see summary in Sect. 2)

ABSTRACT

Adversarial attacks are a major concern in security-centered applica-
tions, where malicious actors continuously try to mislead Machine
Learning (ML) models into wrongly classifying fraudulent activity
as legitimate, whereas system maintainers try to stop them. Adver-
sarially training ML models that are robust against such attacks
can prevent business losses and reduce the work load of system
maintainers. In such applications data is often tabular and the space
available for attackers to manipulate undergoes complex feature
engineering transformations, to provide useful signals for model
training, to a space attackers cannot access. Thus, we propose a
new form of adversarial training where attacks are propagated be-
tween the two spaces in the training loop. We then test this method
empirically on a real world dataset in the domain of credit card
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fraud detection. We show that our method can prevent about 30%
performance drops under moderate attacks and is essential under
very aggressive attacks, with a trade-off loss in performance under
no attacks smaller than 7%.
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1 INTRODUCTION

Machine Learning (ML) models are vital in many security-sensitive
applications [14]. In the financial services industry they are used
to classify, for example, credit card transactions as legitimate or
fraudulent [4]. In this naturally adversarial setting, fraudsters con-
tinuously adapt their techniques to bypass the system, while the
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system maintainers try to stop them. Thus, being able to train a sta-
ble model that withstands such attacks is valuable to avoid frequent
and expensive model retraining operations with fresher data.

In tabular data domains, the raw features space containing some
of the features available for the attackers to manipulate directly
is often enriched, for model training, into an enlarged space via
complex temporal and entity based aggregations [2]. This poses
the additional challenge of incorporating the propagation of per-
turbations between two spaces in the adversarial training loop.
Furthermore, designing appropriate attacks and attack search meth-
ods is essential to obtain models that are robust. Thus we propose
an extension of adversarial training with all these ingredients and
perform an empirical study on a credit card fraud detection dataset.
Methods that tackle a similar setting do not address the propagation
of perturbations and focus only on attacks [4].

Our main contributions are as follows:

o We parameterize adversarial perturbations and develop methods
to search for strong attacks on tabular data (Sect. 2.2, 2.3 and 2.4).

o We formulate different approximation methods to efficiently up-
date complex temporal aggregations as a result of adversarial
perturbations of raw features (Sect. 2.2.2).

e We introduce an adversarial training framework that increase
the robustness of a classifier against a broad range of attacks
(Sect. 2.5). Particularly, in our empirical study (Sect. 3) we develop
a model that is well protected against multiple attack strategies
generalizing well under new attacks in test. This is achieved at a
cost in performance on test data without attacks between 4% and
7%, (the adversarial robustness trade-off [16, 17]), while avoiding
disastrous losses if the developed attacks arise (from 30% loss to
random guessing performance, depending on the perturbations).

The paper is structured starting with a description of the meth-
ods (Sect. 2) followed by the empirical study (Sect. 3), and a brief
summary of related work (Sect. 4) before the conclusions (Sect. 5).

2 METHODS

Figure 1 shows a high level view of our adversarial training method.
We summarize the main parts leaving details for later sections:

(1) Inputs:

® Raw features dataset (Section 2.1): We assume we have a tabu-
lar dataset with N rows as input. For each row, the vector of
raw feature values to be perturbed is x € X and the classifica-
tion target values is y € Y. The union of all rows composing
the dataset is denoted by matrices X € XN and Y € ¥V,
Features plan (Section 2.1): We assume the set of raw features is
enriched via a transformation f : X — X’ of the input rows
X to produce a new vector of features x” = f(X) for each row.
The matrix of new feature values for all rows is denoted by
X’. A row-by-row mapping operation is a special case where,
instead, x — x” = f(x) : X — X’. Feature engineering
is important in tabular data domains and it often involves
non-bijective mappings from the raw dataset, which forces
us to adapt the adversarial training loop. Aggregations that
group several instances, such as time window aggregations
grouped by an entity (e.g., user), which we denote as profiles,
and feature extraction from text fields, are common examples.
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(2) Apply feature engineering: The first step is then to enrich
the original raw features dataset by applying the features plan.

(3) Train Profile Features Estimator (Section 2.2.2): Profile fea-
ture re-computations can be expensive inside the adversarial
training loop. For a faster adversarial training we train auxiliary
models to estimate changes in profiles under adversarial attacks,
using only the unperturbed event.

(4) Train Initial Classifier (to be made robust): Before adver-
sarial training, we train a model on the unperturbed dataset.

(5) Adversarial Training Loop (Section 2.5): This consists of
several rounds of i) searching for attacks on a portion of the
training set instances and ii) updating the model by including
those perturbed instances in the training. The main goal is to
obtain a robust model that, after a number of rounds, performs
better than the initial model trained without attacks, when both
are subject to the same attack search strategy. Our steps of
adversarial training are as follows:

(a) Sample Instances: We focus on a binary classification use-
case where only the positive instances are sampled to be
attacked. The goal is to lead the model into wrongly classi-
fying positives as negatives.

Attack Search (Section 2.2): Next we search for the best

attack for each of the selected instances. Our attacks are

targeted at reducing the positive class score by perturbing

a set of raw fields. Then the perturbations are propagated

to the engineered features. In particular, the perturbations

of the profile features are applied using the pre-trained

Profile Features Estimator.

Update Classifier: The attacked dataset is then used to tune

the model by performing several gradient steps (we use a

gradient boosted decision trees algorithm).

(d) Attack Validation Set and Evaluate Model: Finally, the vali-
dation set is attacked and a target performance is evaluated
on it to verify if the model performance stabilized or if
adversarial training continues.

(b
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In the next sections we provide further details of the method.

2.1 Input Data Transformations

We assume the input data contains numerical features, text fields
and categorical features. Complex entities may be present com-
bining various features. For example, a card entity combines a
categorical feature to identify the credit card network with a card
number and expiry date. So, an attack where a card is switched
likely changes many attributes at once. Next we describe transfor-
mations to produce features in X’.

2.1.1  Row-wise map operations: Simple examples in transaction
fraud detection are: i) compute a ratio between two features, ii)
extract a country category from a phone number, iii) extract geolo-
cation from a zip code, etc...

2.1.2  Aggregations of groups of rows: These features encode more
complex information. Examples are temporal or spatial windowed
aggregations that group together instances within a time frame or
in a given spatial region (a count of transactions by a card in the
last 24 hours is such a profile feature aggregation). In this example,
perturbing the timestamp of the targeted row could potentially
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influence which rows are used in the aggregation, thus making
adversarial training non-trivial. On the other hand, if perturbations
are applied on the co-domain X’ directly, i.e., on the engineered
features, we can obtain values that do not correspond to any con-
figuration of perturbed rows in the domain X N _Or, even if they
do, finding the exact domain values might be very complex, in-
volving finding the exact grouping configuration originating the
perturbed feature value. More specifically, consider the example
of the count of transactions by a card in the last 24 hours. If the
count is perturbed directly, e.g., from 5 to 12, we have to find how
to adjust the timestamps of several other rows so that they fall into
the last 24 hours to increase the count (with the complex side effect
of perturbing several other groups containing the adjusted rows).
This example shows that devising an efficient way to propagate
perturbations from X to X’ is key for adversarial training (later
discussed in Section 2.2.2).

2.1.3  Higher order transformations: Finally, it is common to apply
secondary transformations to the generated features. This is useful
to provide direct signals to the model. For example, after computing
a profile feature for the average and standard deviation of the
amount spent by a card in the last week, compute a z-score for the
amount of the current transaction to signal how much of an outlier
the observed amount is.

2.2 Adversarial Perturbations

We discuss how to define adversarial perturbations on X, propagate
them to X’, measure their magnitude and search for them.

2.2.1 Types of perturbations.

o Categorical perturbations: Categorical features are perturbed by
replacing the category value by an existing value.

o Text perturbations: The string in a text feature can be changed in
part (e.g., replacing, removing or adding characters) or fully. If
used as a categorical it amounts to replacing the category value. If
used for feature extraction then derived features can be affected.

o Numerical perturbations: These can be defined by a shift, scaling
or any other numerical mapping.

o Grouped perturbations: In some cases groups of features may be
perturbed together in a correlated way, either categorical, text
or numerical groups or mixtures of any of them. For example, a
perturbation of a latitude coordinate may imply a perturbation of
the longitude within the constraint of not falling into the ocean.

2.2.2  Perturbation Propagation Methods. In this section, we start
by discussing how perturbations propagate from X to X’, in the
credit card fraud detection use case, to present our perturbations
pipeline. Then we discuss practical methods to update such derived
features either exactly or approximately.

Examples of effects of perturbations on engineered features. In credit
card fraud detection common attacks by fraudsters are as follows:

o Amount perturbations - A fraudster can alter the numerical amount
of a transaction, thereby affecting profile features.

o Temporal perturbations - This impacts profile features. Shifting
the timestamp of an instance alters which instances are in the
time window, thereby affecting the aggregation outcome.
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o Card resets or switches - In fraud detection this corresponds to
a fraudster switching a card that was identified as stolen. The
engineered features involving the card identifier as a grouping
criterion are reset to a base value (e.g., the count of transactions
of the card in a time window goes back to 1). If all the card’s
features are changed (e.g., the card issuing network also changes)
we call it a card switch.

Geolocation perturbations - This is an example of a group of
numerical features (latitude and longitude) that are typically
perturbed simultaneously. In some scenarios, fraudsters could
spoof their IP, which is used to identify their location.

In our method we apply such perturbations to a transaction in 4
steps: i) change categorical and numerical features directly (either
individually or in groups) in an exact manner, ii) shift timestamp
and update the corresponding profiles, iii) change the amount and
update profiles and iv) reset profiles by changing the values of
grouping entities (e.g., card). A representation of this pipeline ap-
plied to a perturbed (victim) instance is displayed in Figure 2.

Exact updates. We now provide examples of exact updates of the
engineered features in X’ following the pipeline of Figure 2:

o Categorical features updates: To perturb such a feature one simply
changes its value (e.g., switch the card issuer from Visa to Mas-
tercard). When perturbing categorical features, it is important to
note that they are frequently interdependent For instance, the
distribution of Card Verification Value (CVV) flags may differ
across various card issuers. Therefore, some categorical feature
groups have to be perturbed together. Thus, for a card switch,
we replace the values of its features by those of another card,
selected randomly with uniform probability (i.e., reproducing
the original dataset’s distribution). Similar arguments hold for
network features. After categorical features are perturbed, other
dependent features may also be updated either exactly or ap-
proximately (see other examples provided in this and the next
section).

Latitude and Longitude: Values are selected for both coordinates

simultaneously using a uniform distribution from regions with

sufficient density in the original dataset.

Aggregation function value updates: Even if a group of instances

used in an aggregation does not change (e.g., as a result of a

timestamp perturbation), other perturbed features may change

the output of the aggregation. For sum profiles and other as-
sociative operations this can be updated exactly by computing

differences. For example, if the sum amount in the last hour for a

victim card is 1200 when the amount for the current transaction

is 100, the new sum amount will be 1150 when the transaction

amount is perturbed to 50.

e Higher order transformation updates: Other secondary feature
updates are, in many cases, straightforward, since most consist
of ratios between profiles or derived features via functions of a
single row.

Approximate updates. We now discuss methods to approximate
temporal aggregations (i.e., profiles):

o Data-driven: For time windows with a large number of instances
in each group (high volume profiles), we estimate perturbations
of a single instance using a look-up table that stores the mean
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Figure 2: Diagram for the full perturbation pipeline

profile value over time for each profile. The assumption is that
the main source of change is not due to the instance shifting in
time but, instead, is due to the group of instances changing. An
example of a high volume profile is the number of transactions
for a given merchant (e.g., an electronics retail website) in the
last month. For these profiles we compute a histogram of values
by binning over time (e.g., calculate the mean for each profile
using bins of one hour - see diagram in Figure 3). Then, for the

Original profile
valu ! Perturbed profile
! value

Timestamp '
perturbation

Profile Value
(hourly means)

Perturbed
timestamp

Original .
timestamp Time

(binned by hour)

Figure 3: Profile estimation for perturbations or large groups.

perturbed value of a profile feature, we use the mean value found
in the look-up table for this feature at the new temporal bin (due
to the time shift). This approach assumes that within the time-
frame of 1 bin, the profile value does not change significantly
around the mean when a single event is inserted or removed.
Model-based: For profiles with a small number of instances in
each group (low volume) we estimate their changes over time
by fitting a multi-output regression model. To train each model,
we build a dataset containing instances perturbed several times,
corresponding to profile changes for various perturbation time
intervals (positive or negative delays). The features of one per-
turbed example, for the regression task, consist of the raw and
engineered features before the perturbation (including profiles)
and the amount of delay that was injected in the timestamp. The
regression targets are the resulting profile values computed ex-
actly. We consider delays between one minute and one week for
consistency with the typical time windows used for profiling.
We choose to draw delays 8t from a logarithmic (scale invariant)
distribution with constant probability for log |5¢|, and with equal
probability for either sign.

2.3 Perturbation Norms

To be able to quantify the magnitude of a perturbation, we define a
norm on X, which is specifically tailored to the use case we want to
investigate. In credit card fraud detection, fraudsters are only able to
manipulate the raw features directly so a norm on this space reflects
the real costs driving the fraudster’s decisions when attacking the
model. Furthermore, a norm on the raw features is more practical,
since it can be computed before the (often complex) updates of
the engineered features. It is defined by assigning a custom set of
costs for each attacked feature and then summing them. To gain
insights on the relative importance of each type of perturbation,
we interviewed domain experts whose knowledge helped defining
the following parametrization of perturbations:

o Amount perturbations cost: We allow to vary between 2% to five
times larger than the original value through a scaling factor. We
use a custom cost function of the scaling factor s that grows as:

log(s) ,s>1
~ 1
Camount {log(l/s) s<1 (1)

where camount is a constant. Note that, from a fraudster’s perspec-
tive, both reducing or increasing the amount incurs a penalty
related to trial and error (increasing the risk of blocking several
cards while trying). Increasing the amount offsets some of the
penalty with extra profits from using a larger amount. In con-
trast, reducing the amount always reduces the profit a fraudster
can extract from a stolen card, which is why a rapidly growing
penalty is used when s decreases.
o Temporal perturbations - We allow time shifts |t| (in milliseconds)
smaller than 1 week with a cost ~ ciemporal log(|5t] + 1).
Card resets and switches - It is frequent for a fraudster to have
access to various stolen cards (e.g., stolen online banking details
that allow them to generate virtual cards). We consider two types
of perturbations: i) card resets, which consist of preserving card
features (e.g., name, issuing network, etc...) while only changing
the card id, ii) card switches, which consist of using a completely
new card with all features changed (assumed to cost more).
e Geolocation and Network perturbations - Fraudsters can easily
manipulate these (e.g., changing IP through a Virtual Private
Network). Thus, we assign small constant costs to each of these.

A summary of the costs used in the experiments is provided in
Table 1. We normalize the values so that the norm ranges from 0 to
100 (when all maximal perturbations are applied). It is important
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l Perturbation [ Network [ Geolocation [ Temporal [ Amount [ Card reset [ Card switch (=Card Reset + Additional Cost) ‘

l Cost [ 3 [ 4

| 18 (max) [ 26 (max) | 33 [

49 (= 33 + 16) |

Table 1: Cost of each perturbation used in the experiments.

to note that the choice of norm is use-case specific. The values we
choose for the experiments, though well motivated, are illustrative.

2.4 Perturbation Search Strategies

We now describe methods to generate attacks on X. The goal is
to generate attacks with the highest possible success rate under
the lowest possible search budget. The main attack generation
strategies in the literature are: black box, white box and white box
proxies, respectively corresponding to attacks with access to: i) the
system decision, ii) the full model, iii) to a model that imitates the
true model. Another intermediate possibility, which we explore, is
to attack a black box model in a partial observability setting, i.e.,
with full access to the model outputs (e.g., model scores and not
only the final decision).

Random Search. This is a black box approach that serves as a base-
line for the other search methods. For each sample to be perturbed,
many random perturbations are generated independently by sam-
pling a Bernoulli variable for each feature, to decide if the feature
is perturbed. The Bernoulli trial probability is kept low so that it is
not very likely to perturb an instance using all raw perturbations,
which may skew the distribution of norms to large values. For each
perturbed feature, a new value is generated from a feature specific
distribution (as discussed in Sect. 2.2.2). A similar strategy is used
for every independently perturbed feature, whereas for features
groups (e.g., card features) a single Bernoulli trial is used to perturb
the group.

To evaluate an adversarial strategy, such as random search, we
can consider its success rate in addition to the size of the perturba-
tions it generates. The success rate is computed as:

# successful attacks
Sucess Rate = ———— . 2)
# generated attacks

For random search, an adversarial attack is successful if any of the
generated attacks on an instance switches the model decision.

Stochastic Coordinate Descent. Given the high prevalence of dis-
crete variables in the search space for the use case at hand, we
employ standard algorithms from the discrete optimization liter-
ature, namely Stochastic Coordinate Descent (SCD) [13]. SCD is
initialized with a clean input instance followed by several iterations
sweeping over various features. A sweep consists of repeatedly pick-
ing a different random feature to attack until all features have been
selected. For each selected feature we explore its values, and update
the perturbation value if it is better than the last perturbation (e.g.,
in fraud detection if it results in a lower model score, corresponding
to a lower fraud risk). In this method convergence occurs whenever
a full sweep of all features yields no improvements. In particular,
whenever a feature is selected, a grid of possible values to explore
is generated within the norm constraint on the perturbation. For
categorical features all values are explored whereas for numerical
features a discrete grid of values is generated.

Variations of this method can be formulated depending on the
criterion used to select the best perturbation from the grid, namely:

o Greedy approach: When the goal is to trick the model into classi-
fying positives as negatives, we accept perturbations yielding a
smaller model score.

o Cost-efficient approach: In each attempt to perturb a feature, we
select the perturbation with the best norm change to score change
ratio. Thus, this approach tries to avoid getting stuck in local
minima by optimizing for cost-efficiency.

Greedy Search. Another approach, which tries to circumvent the
local minima problem, consists of generating and exploring a grid
for every feature on each iteration and pick the best feature to
perturb. The success rate of this method is expected to be higher
at the expense of more model score evaluations and, thus, slower
convergence.

2.5 Adversarial Training

In this section we describe specific choices of our implementation
of adversarial training described at the beginning of Section 2.

We begin by generating attacks against a baseline model. These
attacks take a percentage of the positives in the training set and
all positives in the validation set. The attack strategy has its own
set of parameters. The norm constraint is the most important one,
as it determines the maximum cost of the attack and significantly
affects the attack’s success rate.

After replacing the generated samples in the training and vali-
dation sets we update the model by running several iterations of
gradient boosting with early stopping.

Finally, to validate the updated model we generate new attacks
on the validation set and compute three metrics. We evaluate the
model’s performance against a dataset without any adversarial
attacks with the Clean pAUC at a 1% FPR, i.e., the area under the
ROC curve up to 1% False Positive Rate!. This gives us an unbiased
estimate of its performance on clean test set. Similarly, we compute
the Adversarial pAUC at 1% FPR on the attacked version of the
validation set, which can only be as high as the clean pAUC, since
the attack strategy never generates perturbations that are easier to
classify. Lastly, we also assess the attack’s Success Rate.

3 EXPERIMENTS

In this section we present our empirical study of the adversarial
training method. In Section 3.1 we provide an overview of the
datasets and its processing. Next, we describe the training of the
input models, namely the baseline classifier (Section 3.2) and the pro-
file estimation models (Section 3.3). Finally, we discuss the results
of the experiments conducted using adversarial methods, specifi-
cally addressing the benchmarking of attacks (Section 3.4) and the
adversarial training experiments (Section 3.5).

!In fraud detection, the operating region is usually at a low FPR to keep the number
of alerts under control.
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3.1 Data Preparation

We use a proprietary dataset of a payment processing network for
the task of credit card fraud detection. The dataset was sampled by
card entity (the main grouping entity for profiles) including 100%
of the cards with fraudulent transaction and 5% of the cards with
exclusively legitimate transactions. After sampling, the resulting

dataset contains ~180 million transactions and a fraud rate of 0.29%.

About 250 of the engineered features were designed by domain
experts for a production system, including profiles by card and
merchant, row mappings and higher order transformations (see
Section 2.1). One raw feature flags each transaction as Card Present
(CP) or Card Not Present (CNP). We focus on CNP transactions
since online transactions are more prone to fraud. After computing
the engineered features, we only kept the CNP transactions (~34
million) with a fraud rate of 1.2%. The data was split, with the first
10 weeks for training, followed by 4 weeks for validation and 6
weeks for testing.

3.2 Baseline Classifier

Tree-based models, such as gradient boosted decision trees, have
been shown to perform better on tabular data in comparison to deep
learning approaches [9]. A state of the art implementation is given
by the LightGBM library [11], which we use to hyperparameter tune
and train the baseline classifier on the clean train and validation sets
without adversarial attacks. To assess its performance we compute
the normalized partial AUC up to an FPR of 1% and the recall at a
fixed FPR of 1% obtaining, respectively, 0.42 and 0.58.

3.3 Profile Estimation Models

For the profile estimation models, we employ Light GBMRegressor
models using the train and validation sets and evaluate them on the
test set. For simplicity, hyperparameter tuning is done for a single
profile regression model and then the hyperparameters are fixed to
train the remaining models.

We evaluated the regression models using the R? metric. We
compared the results with a baseline that always keeps the profiles
unchanged under the perturbation and obtained large values for
R? but also low ones. To identify under-performers, in Figure 4
we show the absolute difference between the maximum and the
minimum residuals for each profile estimator (normalized by the
profiles’s standard deviation). We highlight the region of interest
in darker red (larger R? and smaller residuals). We checked that by
removing the poorly estimated profile features (outside this region)
from the training of the baseline classifier, there is no significant
drop in the baseline classifier performance. Thus we discard these
under-performing profiles in the remainder.

3.4 Adversarial attacks benchmarking

In this section we compare the various attack strategies by analyz-
ing their success rate versus norm constraint trade-offs.

3.4.1 Random search baseline. In the left plot of Figure 5 we show
the success rate versus the norm constraint for random search.
In this benchmark, we ran 500 iterations of Random Search for
each case. We display two curves to show the difference in suc-
cess rates with and without temporal perturbations. As expected,
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Figure 4: Region of interest for profile predictions. We discard
profiles with large normalized residuals and small R%.

loosening the norm constraint produces higher success rates, i.e.,
more successful adversarial attacks. This figure also reveals two
very effective discrete perturbations: resetting a card and switching
a card (which also demands resetting it), indicated in the figure by
the vertical dashed dotted lines. Overall, the designed perturbation
space can be well explored with a simple random search, finding at-
tacks from as little as 20% to 80% success rate. The strategy reaches
its peak well before it hits the maximum norm constraint (100),
suggesting that smarter attack strategies may have space to find
successful attacks at large norm constraints.

Before discussing other strategies, we note that the execution
times observed for runs with temporal perturbations is four times
larger than runs without them. Thus, we opt to ignore them in the
remaining attack benchmarks (i.e., the norm will be capped at the
corresponding maximum value of 82). In the adversarial training
experiments we will, however, re-introduce them.

3.4.2  Comparison of Black Box Attacks Under Partial Observability.
Regarding the results obtained using the remaining strategies, we
show their performance in the right plot of Figure 5. The cost-
efficient approach produces more efficient attacks than its greedy
counterpart for most of the norm constraints. However, both still
do not beat the random search baseline except for the largest norm
constraint. The greedy approach, on the other hand, is the best
since it beats the benchmark for nearly all norm constraints.

3.5 Adversarial training experiments

In this section we finally present the results for the full adver-
sarial training experiments. For simplicity, we choose to fix the
hyperparameters of the LightGBM algorithm to those found for
the baseline classifier. Otherwise, we vary parameters related to
the adversarial components, namely: the norm constraint used to
generate attacks, the fraction of positives to attack in the training
set and the frequency of attacks during the model training.

3.5.1 Parameter Tuning. We start by analyzing the results obtained
in validation in four adversarial training configurations and norm
constraints of 30 and 65 (respectively not allowing and allowing
card perturbations - see Table 1). One of the key metrics to indicate
if the models are getting more robust is the adversarial pAUC, which
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Figure 5: Attack Search Strategies Benchmarking: Comparisons of success rate vs norm constraint for random search with and
without temporal perturbations (left) and for all attack strategies without temporal perturbations (right).

we analyze, in Figure 6. We display two options for attacking the
training set and updating the model: i) attack after a fixed number
of gradient boosting model update rounds (i.e., periodically) and ii)
attack after full convergence of the gradient boosting model update
(evaluated by the pAUC on the validation set). The results show that
larger adversarial fractions in the training set yield faster improve-
ments in adversarial performance in early iterations, though both
converge to similar values. Similar conclusions hold for a norm
constraint of 65, which we do not display for simplicity.

It is also important to evaluate the performance of the adversari-
ally trained model on clean data. In the right panel of Figure 6 we
visualize the trade-off between clean (horizontal axis) and adversar-
ial (vertical axis) performance at each iteration, for each experiment
(the last iteration of each configuration is indicated with a star sym-
bol). We observe that clean performance is lower when including
a larger adversarial fraction in the training set, as expected. If we
consider the best configuration the one with the highest adversarial
PAUC, we observe that we only incur a small clean pAUC drop (of
about 0.005 pAUC points, i.e., 1.0%). Thus, we select the configura-
tion with an adversarial fraction of 0.05 and train until convergence
for the remaining experiments.

3.5.2  Test Set Results. In this section, we finally train models with
various norm constraints and evaluate them on the test set. Ro-
bustness should improve when stronger attacks are used to train
the model, since a model robust against a strong attack is expected
to also be robust against a weak one. We test this hypothesis by
evaluating the pAUC on an attacked test set for each model. In
the left plot of Figure 7 we show the adversarial pAUC for models
trained with various norm constraints, evaluated on the test set
attacked with various norm constraints without temporal pertur-
bations (x-axis). We observe that the performance of the baseline
model drops fast with increasingly larger attacks, which shows
that it is not robust under such attacks. As for the adversarially
trained models, they are significantly more robust. We also see that
training with a larger norm constraint does not necessarily produce
a more robust model. For example, a model trained with a norm
constraint of 65 achieves robustness similar to one with 82. This
happens, in part, because both constraints allow the same types of
perturbations (see Table 1). Also, observe that a model trained with
amount and categorical perturbations (norm constraint of 30) is

more robust at small norm constraints than models trained with a
less constrained norm. This is expected, since a model trained with
a more constrained perturbation space should be more optimized
to attacks on that space.

In the right plot of Figure 7 we show results for experiments
with temporal perturbations. Since they are computationally de-
manding, we only explore two norm constraints, i) only allowing
small perturbations up to 30 (i.e., without card resets/switches);
and allowing all perturbations (100). The overall conclusions are
qualitatively similar: as we include larger perturbations we get a
model that is more robust to a broader spectrum of perturbations.

Finally, focusing on the points with a norm constraint of zero in
the plots of Fig. 7 we observe that, as expected, we sacrifice some
performance on clean data, since the blue point for the baseline
evaluated on clean data, is above the adversarially robust models
evaluated also on clean data. The observed drop ranges between 4%
and 7% (the highest for the models trained with the most aggressive
attacks injected).

4 RELATED WORK

Adversarial robustness has recently gained a lot of interest with
many studies addressing new strategies to design attacks [1, 3—-
8, 10]. The problem is typically stated as follows. Consider the loss
function J(6, x,y), which corresponds to the cost of classifying
an example x of label y with a model parameterized by 6. The
adversary’s goal will often be to attack the model by adjusting the
input, x, that is passed to the model so that, instead, it maximizes
the loss function:

max J(0,%,y) (3

xXex+A

Typically, these perturbations to x cannot be arbitrary. In most
scenarios, the generated example still needs to be close “enough”
to the original input. In some contexts, certain features of x cannot
be edited or have to conform with the original input domain. We
denote this allowable set of perturbations by A.

4.1 Adversarial Attacks

Typical classes of attacks in the literature are as follows. A white box
attack assumes an attacker with full access to the model that can
perform infinite queries, thus being able to devise strategies with
high success rates [3]. It has been argued, [6], that such approaches
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perturbations included in both training and testing.

are somewhat detached from reality: in practice, attackers have
no access to the real model being attacked, and more importantly,
there is a limited number of queries an attacker can perform before
being flagged as suspicious and denied any further attempts. This
latter approach has been coined as a “black-box” attack, and has
been studied in contexts that often resemble real world scenarios;
i.e., when the attacker only has access to the model decision [6].

Adversarial attacks aim to solve the maximization problem posed
in Equation (3): given a set of allowed perturbations, find the ad-
versarial sample that will maximize the loss of the target model.
One of the first proposed methods to generate adversarial attacks
was the Fast Gradient Sign Method (FGSM) [7]. FGSM solves the
constrained problem by replacing the cost function J with a linear
approximation around the victim sample x. This solution can be
interpreted as being a one-step scheme for solving Equation (3)
[12]. Later approaches proposed to develop a stronger attack by
iteratively perfecting the adversarial perturbation by performing
projected gradient descent (PGD) upon the negative loss function.
Considering FGSM as a single gradient step, PGD tries to solve Equa-
tion (3) with multiple projected gradient steps, where the result is
projected onto the set of valid adversarial examples [12]. For attacks
on non-differentiable models or black-box settings, an approach is
to compute zeroth order gradients to generate attacks [6].

4.2 Adversarial Training

In order to increase the robustness of classifiers against adversar-
ial examples, Szegedy et al. [15] propose adversarial training. It
consists of a form of data augmentation where the goal is to ex-
pose flaws in how the classifier models its decision function by
generating examples that target these specific sub-spaces of the
input space [7]. When training the model, adversarial examples
are generated iteratively. The primary reason for this to be done at
train time is that the concept of an adversarial example depends
on the parameters of the model. An adversarial example generated
prior to training is, most likely, very different to one generated
post training. The authors show that by training the model using a
mixture between clean and adversarial samples the model can thus
be regularized [7, 15].

5 CONCLUSIONS

In this work, we have presented a framework to train adversarially
robust models on tabular data with focus on the fraud detection
use case. We defined a perturbation space with a norm, as well as
efficient methods to propagate perturbations to the feature engi-
neered space of the model. Then we studied several attack search
methods on such space, benchmarking them, and included the best
method in the adversarial training loop to successfully developed
models able to withstand strong attacks. This included studies of
the best adversarial hyperparameters and, finally, an evaluation on
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test data to understand the trade-offs between model performance
on clean data and attacked data for the adversarially trained model
and the baseline. Our main conclusions are:

e Regarding the attack search method, we found greedy search to
be the most effective.

o Adversarial training prevents large performance drops (of about
30%) against moderately large attacks and is essential against
very aggressive attacks (total loss in performance).

o Even for adversarially trained models with very strong attacks,
their drop in performance on clean test data (with no attacks) is
not larger than 7%.

Interesting directions for future work are as follows. Our explo-
ration of the hyperparameters was also mostly focused on parame-
ters related to the adversarial components. Thus, it would be inter-
esting to perform a more extensive search study of all the hyperpa-
rameters. Regarding comparisons with other attack search settings,
we could also compare our results against a white box adversarial
training setting and explore further attack search algorithms. As
for the data, it would be interesting to study further datasets and
use cases. It would also be interesting to be able to adversarially
train a model using a dataset that has surely undergone an adver-
sarial change to test the robustness of a model adversarially trained
before such a change happened.
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