
From random-walks to graph-sprints: a low-latency node embedding 
framework on continuous-time dynamic graphs

Contributions
We propose Graph-sprints, a graph feature extraction framework 
which computes node embeddings in the form of histograms 
characterizing a node’s neighborhood in dynamic graphs.

Our contributions include:
● A streaming, low-latency graph feature engineering method for 

continuous time dynamic graphs.
● Benchmarking Graph-sprints against state-of-the-art methods 

using five different datasets.

We show that Graph-sprints features, combined with a neural network 
classifier, are up to 10x faster to run while achieving up to +5% AUC 
in binary node classification compared with the higher-latency GNNs.

Ahmad Naser Eddin, Jacopo Bono, David Aparício, Hugo Ferreira, João Ascensão,Pedro Ribeiro, Pedro Bizarro 

Methods Results

References
[1] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks. In 
Proceedings of the 25th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM.
[2] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein. 2020. Temporal Graph 
Networks for Deep Learning on Dynamic Graphs. In ICML 2020 Workshop on Graph Representation Learning.

Motivation
● Typical GNNs are computationally heavy, resulting in high 

inference latencies.
● Performing the graph aggregations asynchronously results in 

inference using outdated information.

Our aim is to design a system that:
● Enables low-latency inference.
● Uses most up-to-date information during the embedding calculation.
● Is competitive with state-of-the-art, higher latency methods.

A. A temporal random-walk is traversed from the most recent interaction 
A-B towards older interactions. 

B. The same random-walk can be seen as a timeseries of edges. 
C. A full temporal random-walk can be summarized by aggregating 

encountered feature values. 
D. One can compute similar summaries in a streaming setting, from only 

the new edge and the existing embeddings of the involved nodes.

Step D illustrates Graph-sprints. Formally, given a node’s old embedding 
s0, the interacting node’s embedding s1 and a new edge features f0, a new 
node embedding is calculated using the following formula:

The parameters ⍺ and 𝛽 control how quickly older information is forgotten.

Node classification AUC vs Inference runtime 

● A neural network classifier that uses Graph-sprints (GS) or 
Graph-sprints + raw (GS+raw) features achieves the best performance 
in three node classification tasks, compared to state-of-the-art methods 
(Jodie[1], TGN[2])

● Graph-sprints (GS) is considerably faster to run at inference. Moreover, 
unlike other methods, GS inference time remains constant when the 
number of edges increase (larger/denser graph). Thus the speedups 
obtained increase with the number of edges in the graph.

● Similar results were obtained in the two internal datasets (see article).

Baselines Ours


