
From random-walks to graph-sprints: a low-latency node embedding 
framework on continuous-time dynamic graphs

Contributions
We propose Graph-sprints, a graph feature extraction framework 
which computes node embeddings in the form of histograms 
characterizing a node’s neighborhood in dynamic graphs.

Our contributions include:
● A streaming, low-latency graph feature engineering method for 

continuous time dynamic graphs.
● Benchmarking Graph-sprints against state-of-the-art methods 

using five different datasets.

We show that Graph-sprints features, combined with a neural network 
classifier, are up to 10x faster to run while achieving up to +5% AUC 
in binary node classification compared with the higher-latency GNNs.
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Motivation
● Typical GNNs are computationally heavy, resulting in high 

inference latencies.
● Performing the graph aggregations asynchronously results in 

inference using outdated information.

Our aim is to design a system that:
● Enables low-latency inference.
● Uses most up-to-date information during the embedding calculation.
● Is competitive with state-of-the-art, higher latency methods.

A. A temporal random-walk is traversed from the most recent interaction 
A-B towards older interactions. 

B. The same random-walk can be seen as a timeseries of edges. 
C. A full temporal random-walk can be summarized by aggregating 

encountered feature values. 
D. One can compute similar summaries in a streaming setting, from only 

the new edge and the existing embeddings of the involved nodes.

Step D illustrates Graph-sprints. Formally, given a node’s old embedding 
s0, the interacting node’s embedding s1 and a new edge features f0, a new 
node embedding is calculated using the following formula:

The parameters ⍺ and 𝛽 control how quickly older information is forgotten.

Node classification AUC vs Inference runtime 

● A neural network classifier that uses Graph-sprints (GS) or 
Graph-sprints + raw (GS+raw) features achieves the best performance 
in three node classification tasks, compared to state-of-the-art methods 
(Jodie[1], TGN[2])

● Graph-sprints (GS) is considerably faster to run at inference. Moreover, 
unlike other methods, GS inference time remains constant when the 
number of edges increase (larger/denser graph). Thus the speedups 
obtained increase with the number of edges in the graph.

● Similar results were obtained in the two internal datasets (see article).
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