
TEDD: Robust Detection of
Unstable Temporal Features

Ricardo Pereira1

DCC/FCUP University of Porto
Porto, Portugal

up201604583@fc.up.pt

Bruno Casal Laraña
Feedzai

Porto, Portugal
bruno.larana@feedzai.com

Nádia Soares2

Mindera
Porto, Portugal

nadia.soares@mindera.com

Miguel Araújo
Feedzai

Porto, Portugal
miguel.araujo@feedzai.com

Abstract—When working with real-world temporal data, it is
common to encounter features whose distribution is changing
over time. The naive employment of Machine Learning models on
this unstable data might lead to rapidly degrading performance,
especially if the new distribution is much different from what
was previously seen during training. In order to cope with this
problem, it is critical to automatically identify features that are
changing over time. With these features detected, data scientists
and other practitioners will be able to mitigate the issue (for
instance, by applying data transformations), deploying more
robust models that retain high performance for longer periods
of time.

In this paper, we describe which temporal changes a feature
should not suffer from, and propose TEDD, a technique to
a) identify when a dataset might lead to an unstable Machine
Learning model and b) automatically detect which features cause
such lack of robustness. In order to achieve it, we leverage a
regression model to highlight which features contribute to a
good prediction of an instance’s timestamp. We compare our
approach to other methods in real and synthetic data, testing
their detection capability on all simple change patterns. We show
that our method: detects all types of basic changes, both for
numerical and categorical features; can detect multivariate drifts;
returns a comparable value measuring the amount of change of
each feature; requires no parameter tuning; and is scalable both
on number of features and instances of the dataset.

I. INTRODUCTION

The purpose of a data scientist or machine learning en-
gineer is to build a Machine Learning model using existing
data, and then apply it to new, never-before-seen instances.
During this process, a common assumption underpinning most
Machine Learning algorithms is that feature distributions do
not change over time, a concept often called the stationary
hypothesis. For instance, think about building a model to
predict whether a picture contains a cat or a dog - one can
somewhat safely assume that new images will share many
properties with old images3. However, it is quite common to
encounter non-stationary environments when working in real-
world applications. Consider fraud detection, churn prediction
or product recommendations. These are dynamic environments
where data attributes may change quickly.

1 Work developed during an internship at Feedzai.
2 Work developed while employed at Feedzai.
3 We still wouldn’t want to use a ML model trained on pictures from the

1940s to evaluate 2020 images. We can see that temporal evolution is still
happening, but at a much slower pace.

We can see that whether new instances are similar to those
used to train our model is a characteristic of the problem or
data collection method and it is typically not under our control.
This raises a problem because, if there is a change in the dis-
tribution of some features in the dataset, the function that the
model learned using the training data might be outdated when
the model is deployed. When one takes into consideration
typical delays between model training and model deployment
(months, at some companies), then this problem is exacerbated
even further. In that case, the non-stationarity of the data will
most likely result in a significant loss of the model’s predictive
power. This has significant real world impact, as model decay
leads to higher operational costs (additional model retrainings
are necessary) or, even worse, to erratic and potentially unfair
behavior towards end-users.

In order to prevent this, we first need to detect that a
change is taking place. So, how can we detect features whose
distribution is changing over time? Which are the desired
properties for such detection method? What type of changes
are we expected to encounter? We present the two problems
we address in this paper:

Problem 1 (Detecting drift).
Given: a dataset with N instances, each with an associated
timestamp and a set of associated attributes (features).
Find: a measurement of how much our data is affected by
features who are not stable over time.

Problem 2 (Identifying critical features).
Given: the same setting of Problem 1,
Find: a ranking of the features, sorted by how much they are
changing over time.

Our contributions can be summarized as follows:

• Properties: We identify the desired properties and key
problems that a solution to this problem should address.

• Method: We propose a novel technique called Temporal
Drift Detector (TEDD) that verifies all the above identi-
fied properties while being able to work out of the box.

• Experiments: We compare our method to other four
techniques using real and synthetic data, showing that we
do a better job detecting change, specially for the cases
of erratic behaviour and multivariate change.

II. RELATED WORK

The most common methods for detecting a change in the
distribution of data are statistical tests, either parametric or
non-parametric. They can be used to compare specific statistics
(like mean and variance) between two samples and test if they
are significantly different. Examples of this type of methods
include the Student t-test [1] and the Fisher f-test [2] for the
parametric group; and the Mann-Whitney U-test [3] and the
Wilcoxon signed-rank test [4] for the non-parametric one.

While the tests mentioned in the previous paragraph only as-
sert that a chosen statistic of two samples is similar, statistical
distances gives us a measure of how different the distributions
of those two samples really are. Some examples of these
metrics are the Kolmogorov-Smirnov test [5], the Kullback-
Leibler Divergence [6] and the Wasserstein Distance [7] (also
known as the Earth Mover’s Distance).

Both statistical tests and distances were meant to distinguish
between distributions, so the natural way to apply them to our
use case is to treat the features independently, split the dataset
into several time windows and compare the distributions
of the corresponding samples pairwise. Results can then be
aggregated for each pair of windows in order to measure the
overall change.

Another common approach is using control charts to mon-
itor the data as time passes. These are techniques that try
to identify a point in time when the underlying distribution
changed. The Shewhart individuals control chart [8] is a simple
example, in which we use an initial sample to determine a
baseline and upper and lower limits for the data, considering
points outside these limits to be out of control. The exponen-
tially weighted moving average (EWMA) chart [9] is a relaxed
version of the Shewhart’s in which we also establish a upper
and lower limit, but we only deem the process out of control
if the EWMA is outside these boundaries. The cumulative
sum (CUSUM) control chart [10] is another variation of
this method, in which we keep track of the sum of the
deviations from the expected value and alert if it goes beyond
a chosen threshold. Lastly, the Adaptive Windowing algorithm
(ADWIN) [11] uses a sliding window approach where the
size of the window is automatically updated depending on
the current behaviour of the data stream, providing rigorous
guarantees of its performance.

Other approaches include the generalized likelihood ratio
[12], the interception of confidence intervals [13] and methods
based on novelty detection [14], to name a few.

Most methods mentioned above have been proposed as
ways to detect covariate shift, which refers to a change in
the distribution of the input features (not the label) between
training set and test set when training Machine Learning
models [15]. When working with temporal data, covariate
shift might be seen as a special case of the problem that we
are trying to solve, as it is common to separate the available
data in two separate time windows, the oldest being used for
training and the most recent for testing. Therefore, a change

in distribution between train and test implies a change over
time.

There is a widely used ad-hoc method to detect covariate
shift, which we will call CST (covariate shift test). After
splitting the data between train and test, we add a new label
with the origin of each instance (train or test) and train a
classification model to predict this new label given the value
of the remaining features. The better the model performs,
the greater the change is. There are slight variations of this
method: one can either train the model with one feature at a
time and compare the scores to see which feature is changing
the most; or train the model with all features and use a feature
importance metric to discriminate them.

III. PROPOSED METHOD

A. Important Properties

Which properties should a drift detection method satisfy?
Let X be our T × N feature matrix, where each row

corresponds to a timestamp and each column to a specific
feature of our dataset. Let Xi represents one of its columns and
t be the vector of timestamps associated with each instance.

We want a detection method that alerts whenever a feature
has one of the following properties:

1) For numerical features:
P1. Linear change of mean

Methods should detect simple linear changes of mean
values, i.e. E[Xi] = ait.

P2. Abrupt change of mean
Mean changes at a given timestamp k, i.e.

E[Xi] =

{
a, if t < k

b, if t ≥ k

P3. Linear change of variance
Variance linearly changes, i.e. V ar[Xi] = ait.

P4. Abrupt change of variance
Variance changes at a given timestamp k, i.e.

V ar[Xi] =

{
a, if t < k

b, if t ≥ k

2) For categorical features:
P5. Change of relative frequency

Methods should detect when the relative frequency of
values in a categorical variable changes significantly,
i.e., when the probability of seeing a specific categor-
ical value is not constant when considering time:

P (Xi = k|t) 6= a

P6. Change of domain If a new categorical value is sud-
denly introduced, i.e.

P (Xi = a|t) =

{
0, if t < k

b, if t ≥ k

3) General:
P7. Erratic behaviour

Whenever, for some periods, feature values are not
available or misreported (e.g., values are reported as
missing, null or 0 for those periods).
Let L = [(a1, b1), ..., (ak, bk)] be a series of k non-
periodic non-overlapping intervals and Xe

i be the sub-
set of entries of Xi that occurred in one of the intervals
defined in L and Xn

i = Xi\Xe
i represent the remaining

observations during normal behavior. Then we consider
a feature to be erratic whenever

Xe
i = 0 and Xn

i 6= 0

P8. Multivariate change
The distribution of every feature is stable over time,
i.e. P (Xi|t) = P (Xi) ∀ i, but there are multivariate
dependencies on time, i.e. P (X|t) 6= P (X).

Additionally, a detection method should also be:
P9. Linearly scalable

Linear scalabilty both in the number of instances and
number of features is important given the size of
common datasets.

P10. Parameter-free
As drift detection is ideally performed as a sanity-
check at the beginning of a Data Science pipeline, one
shouldn’t expect users to spend significant time tuning
parameters.

B. Problem 1 - Detecting drift

We’ll start by identifying how one can measure how much
our dataset is affected by unstable features.

Let x be a p−dimensional random variable that follows the
distribution of the feature vector of the dataset. Saying that
the distribution of features does not change across time is the
same as to say that ∀ti, tj : P (x|ti) = P (x|tj), i.e., knowing
the time at which this instance was observed has no influence
on our probability distribution.

If the probability distribution of x is the same for every
value of t, we can say that P (x|t) = P (x). From there, we
can conclude by trivial application of Bayes’ theorem

P (x|t) = P (x)⇔ P (t|x)P (x)
P (t)

= P (x)⇔ P (t|x) = P (t)

Therefore, we can detect if there is a change in the distri-
bution of our features over time by verifying if knowledge of
our feature vector affects the probability distribution over the
timestamps in our dataset.

Now, if we train a regression model M to predict timestamp
based on the feature vector, it will learn to approximate P (t|x),
usually by minimizing the mean squared error (MSE). If the
feature vector is not changing over time, then M is trying to
make a prediction given random noise. In order to minimize
the MSE, M will converge to predicting the mean value of
the timestamp vector. Anything better can only be achieved if
M was able use the value of x to make a better prediction of
t, which would contradict our initial hypothesis.

We propose the use of the coefficient of determination of our
regression model, which indicates how much better M is than
a baseline model always predicting the mean, as a measure
for how much our dataset is affected by features which are
changing over time.

R2 = 1−
∑N

i=1(ti −M(Xi))
2∑N

i=1(ti − t)2

If there is no change in the distribution and M is similar
to the baseline model (∀ instances i, M(xi) ≈ ti), R2 will be
very close to 0. Conversely, the closer this value is to 1, the
greater the change in distribution needs to be.

C. Problem 2 - Ranking features by amount of change

Now that we know how to measure how much influence
time has over the distribution of our features, we would like
to rank them according to their impact.

We propose the use of standard feature importance tech-
niques to rank all features by their contribution to the predic-
tion of timestamp.

Given that we measure the amount of change in the distribu-
tion of features by the reduction of the mean-squared error in
relation to the baseline model and that the feature importance
measured as described above serves as a way to give credit to
each feature proportionally to the its contribution towards that
reduction, this aligns directly with what we needed.

D. Implementation

When selecting a specific Machine Learning technique to
train model M , we need to select an algorithm that allows us
to achieve all properties in sub-section III-A. For instance,
one should use neither a linear model (as it won’t detect
multivariate changes) nor SVM (as they typically do not offer
linear scalability). Other techniques are not a good choice as
they require significant parameter tuning, e.g. Deep Learning
architectures and k-Nearest Neighbors distance functions.

We choose Random Forest as the regressor model of TEDD
because it is a robust method that can handle any type of tab-
ular data. As a decision tree based model, its standard feature
importance metrics have the desired properties specified above
and most implementations already have a built-in function for
that purpose. In this case, the feature importance is measured
by the normalized total reduction of the cost function of the
nodes that split by that feature.

Also, regarding parameter tuning, we find that using com-
mon default values for the model’s parameters yields con-
sistent results. Namely, we used 100 estimators(trees) with a
maximum of depth of 32 and the square root of the number
of features to search for the best split.

IV. RESULTS

We conduct several experiments on synthetic and real data
to answer the following questions:
Q1. Can TEDD alert whenever a feature triggers one of the

desired properties?
Q2. Is TEDD linearly scalable?

Fig. 1: Numerical feature with a linear change of mean. We
show a scatter plot of a sample of it (top) and a box plot of
its ranking by each method over 20 runs (bottom).

In the following, we start by introducing the experimental
setup and datasets used, before detailing all experiments
conducted. We compare TEDD with different types of state
of the art methods and show that we are able to pick up every
relevant type of change (both for numerical and categorical
variables) and do it in a way that is scalable (both on the
number of features and instances).

A. Experimental setup

We selected one method from each type mentioned in the
Related Work section: one statistical test, one statistical dis-
tance, one control chart technique and the standard Covariate
Shift Test (CST).

We chose the Mann-Whitney U-test (MWU) as the repre-
sentative of the statistical tests group since it is non-parametric
and used for independent samples. From the statistical distance
group we chose the Earth Mover’s Distance (EMD) because
its definition is aligned with the problem that we have at
hand. From the control chart group we chose the Adaptive
Windowing algorithm (ADWIN) because it is state of the art
control chart and has an available implementation. Lastly, we
decided to use a random forest classification model for the
CST, training a single model with all features and ranking
them according to feature importance, since it was the most
similar option to our method.

We tested the ability of each of aforementioned change
patterns separately by injecting a controlled feature with that

Fig. 2: Numerical feature with an abrupt change of mean. We
show a scatter plot of a sample of it (top) and a box plot of
its ranking by each method over 20 runs (bottom).

type of change in the dataset. We then run all the methods we
are comparing and check in which position of the ranking the
injected feature appears. As we need to sample the original
dataset (some methods don’t scale) and some models are not
deterministic, each experiment was run 20 times with different
seeds. For every experiment, we present a visualization of the
injected feature and a box plot of the ranking of said feature
for each method. We also mention what was the change in the
R2 of the regression model after injecting each feature.

B. Datasets

We used the IEEE-CIS Fraud Detection dataset [16] for
our injection experiments. This dataset includes information of
590 540 card transactions, each with 434 attributes. It includes
features such as the amount being paid, the moment it took
place, billing address and credit card information, to name
a few. The goal is to predict the binary label, isFraud, in
which the positive class corresponds to fraudulent transactions
and the negative to legitimate ones. As some features were
empty or constant, a simple data cleaning step was performed.
After imputing missing values and dropping features that were
at least 95% constant, we end up with a clean dataset with
590 540 instances and 222 features.

Regarding time information, the TransactionDT feature
“is a timedelta from a given reference datetime (not an actual
timestamp)”. Given the range of values, it seems to be in
seconds, spanning for near six months. For plotting purposes,

Fig. 3: Numerical feature with a linear change of variance. We
show a scatter plot of a sample of it (top) and a box plot of
its ranking by each method over 20 runs (bottom).

we will assume it started on 2019/01/01. The dataset includes
a feature named TransactionID which is an indexing
numerical feature used to join tables. However, as it was
assigned in chronological order, it is highly correlated with
timestamp and all methods accurately detect it’s very high time
dependency. Besides these two features, there doesn’t seem to
exist features with high dependency with time, so after we
discard them, the optimal result for all experiments would be
ranking the injected feature as changing the most (rank 1).

After removing these two features, the regression model of
TEDD got an R2 score of 0,44. For every experiment we will
report how much this value changed after the addiction of the
injected feature.

To test the scalability in the number of instances, we used
the WSDM - KKBox’s Churn Prediction dataset [17], which
is a collection of 20 148 758 entries with 22 features, with
user information like membership status, statistics of service
usage and payment data. The goal is to predict the binary label
isChurn, defined as “whether the user did not continue the
subscription within 30 days of expiration”.

P1. Linear change of mean

The injected numerical feature with a gradual change of
mean follows a normal N (µ, σ2) distribution whose mean
grows linearly from 0 at the beginning of the dataset to 2
at the end, while keeping the standard deviation constant at 1

Fig. 4: Numerical feature with an abrupt change of variance.
We show a scatter plot of a sample of it (top) and a box plot
of its ranking by each method over 20 runs (bottom).

(see Figure 1). This feature resulted in an increase of the R2

score of the regression model by 0,07. As we can see, most
methods did a nearly perfect job ranking this feature, the only
exception being EMD which still ranked it in the top 1095%
of the time.

P2. Abrupt change of mean

The injected numerical feature with an abrupt change of
mean follows a normal distribution N (0, 1) during the first
three months of the data, changing to N (2, 1) afterwards (see
Figure 2). This feature resulted in an increase of the R2 score
of the regression model by 0,09. As we can see, both TEDD
and CST were able to rank it perfectly all 20 runs and EMD
kept it consistently on top 10, while the other two methods
were very inconsistent and ranked it much lower.

P3. Linear change of variance

The injected numerical feature with a gradual change
of variance (a case of heteroscedasticity) follows a normal
N (µ, σ2) distribution whose standard deviation grows linearly
from 1 at the beginning of the dataset to 3 at the end, while
keeping the mean constant at 0 (see Figure 3). This feature
resulted in an increase of the R2 score of the regression
model by 0,03. As we can see, TEDD and CST were able
to keep a perfect score while the rest of the methods ranked
it consistently low.

Fig. 5: Categorical feature with a change in the relative
frequency of classes. We show a line plot of their relative
frequency each week (top) and a box plot of its ranking by
each method over 20 runs (bottom).

P4. Abrupt change of variance

The injected numerical feature with an abrupt change of
variance (the first case of heteroscedasticity in this section)
follows a normal distribution N(0,1) during the first three
months of the data, changing to N(0,2) after that (see Figure 4).
This feature resulted in an increase of the R2 score of the
regression model by 0,03. As we can see, the results were
very similar to the linear change of variance, with TEDD
and CST having a perfect score while the rest of the methods
performing poorly.

P5. Change of relative frequency

The injected categorical feature whose classes change their
relative frequency has 4 unique values. They are uniformly
distributed at the beginning of the dataset and gradually change
so that, by the end of the dataset, two of them have a 50%
relative frequency and the other two have 0% (see Figure 5).
Since some of the methods need categorical features to be
encoded, we will use the values of 1 and 2 for the first pair
and 0 and 3 for the second. This way, the numerical properties
(mean and variance) of the feature don’t change drastically
throughout the dataset, which means that if a change is
detected it will not be because of already tested properties
from the method. This feature resulted in an increase of the
R2 score of the regression model by 0,02. As we can see,
TEDD ranked this feature very close to the top, followed by

Fig. 6: Categorical feature with a change in the domain. We
show a line plot of the relative frequency of its classes each
week (top) and a box plot of its ranking by each method over
20 runs (bottom).

CST. EMD detected some drift but didn’t rank it very high
and the other two didn’t seem to notice any drift at all.

P6. Change of domain

The injected categorical feature whose domain changes in
the dataset has two unique values during the first three months
of the dataset and three unique values after that, always being
uniformly distributed according to the current domain. To keep
the numerical properties under control as we mentioned above,
the domain of the first half will be {−1, 1} and {−1, 0, 1}
for the second half (see Figure 6). This feature resulted in
an increase of the R2 score of the regression model by 0,02.
As we can see, TEDD could occasionally rank it near top 1
and consistently below top 10, CST and EMD gave acceptable
results between rank 10 and 20 and MWU and ADWIN not
being able to detect any change.

P7. Erratic behaviour

To simulate a type of erratic behaviour, we started with a
normal distributed feature following N (5, 1) and each week-
end it had a 50% chance of being ”missing” and imputed with
value 0 (see Figure 7). This feature resulted in an increase of
the R2 score of the regression model by 0,01. As we can see,
only ADWIN was able to perfectly rank it all 20 runs, TEDD
and EMD performed decently and the other two didn’t rank
it very high.

Fig. 7: Numerical feature with erratic behaviour. We show a
scatter plot of a sample of it (top) and a box plot of its ranking
by each method over 20 runs (bottom).

P8. Multivariate changes

To test the ability to detect multivariate changes (in which
two or more variables are changing together), we need two
variables to have a dependency with timestamp only when
viewed together. For this experiment, we injected two features:
the first being random noise, a numerical feature uniformly
distributed between 102 and 104; and the second being the
product of the first feature by the timestamp at each instance.
Since timestamp only increases by 1% between its minimum
and maximum values and the random noise feature spans over
different orders of magnitude, there will be little correlation
between the second feature and the original timestamp. These
features resulted in no significant change of the R2 score of the
regression model. As we can see in Figure 8, as expected, only
TEDD and CST were able to catch this multivariate change,
consistently ranking both injected feature on top 10 while the
other methods considered them just random noise.

Fig. 8: Rankings of injected features for multivariate change
detection experiment.

P9. Scalability

For the scalability on the number of features, we used
the same IEEE Fraud dataset as before, without any imputed
features, while varying the number of features in the dataset
by random sampling.

For the scalability on the number of instances, we used the
KKBox Churn dataset as mentioned above, varying the number
of entries in the dataset by random sampling.

Figure 9 shows the average running time after 3 runs. Notice
that the plot is in log-log scale. As we can see, even though
all methods seem to grow linearly, both TEDD and CST are
consistently faster, followed by MWU and EMD with ADWIN
significantly slower. On the first plot we can even see an
order of magnitude of difference between those three groups,
with the model based methods being 10 times faster than the
statistical methods and 100 times faster than ADWIN.

TABLE I: Comparison of state of the art methods

Abrupt Gradual Mean Variance RelFreq Domain Erratic Multi Param-free Scal
Statistical Tests (MWU) ok ok ok
Statistical Distances (EMD) ok X ok ok
Control Charts (ADWIN) ok ok X X
CST X X X X X ok X X
TEDD X X X X X X X X X X

Fig. 9: Scalability test on number of features (top) and
instances (bottom) for each method. Notice the logarithmic
scale on both axis.

C. Final remarks

We summarize the results from every experiment on Table I.
We use three levels of performance: consistently ranking
injected features near the top has a check mark, ranking them
near top 10 is considered ok and below that is left blank.
However, we should note that since all experiments were
performed independently, it is reasonable to believe that some
injected features were easier to detect than others.

In most experiments, TEDD and CST performed much bet-
ter than the other three methods. The main differences between
these two techniques was on the domain change and erratic
behaviour experiment, in which TEDD performed better. The
remaining methods struggle to detect changes of the variance
on numerical features, changes on categorical features and,
of course, multivariate change. A notable exception was the
erratic behaviour experiment where ADWIN was able to detect
it perfectly while the CST performed particularly worse than
on the rest of the experiments.

Regarding the R2 metric, we can see that it clearly aligns
with the ability of TEDD to detect change: for higher values
of R2, it was certain that the injected feature was the one
changing the most; for smaller values of R2, it was more
difficult to distinguish it from the rest of the features.

V. CONCLUSION

In this paper, we address the problem of detecting if features
of a temporal dataset change their distribution over time. Our
contributions are:

• Properties: We identify the desired properties that a
solution to this problem should have, namely: detecting
all types of basic change, both for numerical and categor-
ical features; detecting erratic behaviours and multivariate
change; and be linearly scalable and parameter-free.

• Method: We propose a new method, TEDD , that verifies
all the desired properties using a random forest regression
model trained to predict the timestamp of instances of the
dataset to rank the features that are changing the most
according to their feature importance.

• Experiments: We compare our method to other four
techniques using real and synthetic data, showing that we
do a better job detecting change, specially for the cases
of erratic behaviour and multivariate change.

REFERENCES

[1] R. L. Iman and W. J. Conover, A Modern Approach to Statistics, New
York: Wiley, 1983

[2] C.M. Douglas, Introduction to Statistical Quality Control, 5th ed., John
Wiley & Sons, USA, 2007

[3] H. B. Mann and D. R. Whitney, “On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other”, The Annals
of Mathematical Statistics, vol. 18, no. 1, 1947, pp. 50–60.

[4] F. Wilcoxon, “Individual Comparisons by Ranking Methods”, Biomet-
rics Bulletin, vol. 1, no. 6, 1945, pp. 80–83.

[5] G. W. Snedecor and W. G. Cochran, Statistical Methods, 8th ed., Iowa
State University Press, USA, 1989

[6] S. Kullback and R. A. Leibler. “On Information and Sufficiency”, The
Annals of Mathematical Statistics, vol. 22, no. 1, 1951, pp. 79–86.

[7] C. Villani, Topics in optimal transportation, Graduate Studies in Math-
ematics, vol. 58, American Mathematical Society, 2003.

[8] M. K. Hart and R. F. Hart, “Shewhart Control Charts for Individuals
with Time-Ordered Data”, Frontiers in Statistical Quality Control, vol.
4, Heidelberg, 1992.

[9] H. Raza, G. Prasad and Y. Li, “EWMA model based shift-detection
methods for detecting covariate shifts in non-stationary environments”,
Pattern Recognition, vol. 48, 2015, pp. 659–669.

[10] E. S. Page, “Continuous inspection schemes”, Biometrika, vol. 41, 1954,
pp. 100–115.

[11] A. Bifet and R. Gavaldà, “Learning from Time-Changing Data with
Adaptive Windowing”, Society for Industrial and Applied Mathematics,
2007.

[12] A. Willsky and H. Jones, “A generalized likelihood ratio approach to the
detection and estimation of jumps in linear systems”, IEEE Transactions
on Automatic control 21.1, pp. 108–112, 1976.

[13] C. Alippi, G. Boracchi and M. Roveri, “A just-in-time adaptive classi-
fication system based on the intersection of confidence intervals rule”,
Neural Networks 24.8, pp. 791–800, 2011.

[14] M. Markou and S. Singh, “Novelty detection: a review – Part 1:
statistical approaches”, Signal Processing, 2003.

[15] Moreno-Torres, Raeder, Alaiz-Rodriguez, Chawla and Herrera, “A uni-
fying view on dataset shift in classification”, Pattern recognition 45.1,
2012, pp. 521-530.

[16] IEEE-CIS and Vesta. (2019 July). IEEE-CIS Fraud Detection. Retrieved
on December 2019 from https://www.kaggle.com/c/ieee-fraud-detection/

[17] ACM WSDM and KKBox. (2017 September). WSDM - KKBox’s
Churn Prediction Challenge. Retrieved on December 2019 from
https://www.kaggle.com/c/kkbox-churn-prediction-challenge/

https://www.jstor.org/stable/2236101
https://www.jstor.org/stable/2236101
https://www.jstor.org/stable/2236101
https://www.jstor.org/stable/3001968
https://www.jstor.org/stable/3001968
https://www.jstor.org/stable/2236703
https://www.jstor.org/stable/2236703
https://doi.org/10.1007/978-3-662-11789-7_9
https://doi.org/10.1007/978-3-662-11789-7_9
https://doi.org/10.1007/978-3-662-11789-7_9
https://doi.org/10.1016/j.patcog.2014.07.028
https://doi.org/10.1016/j.patcog.2014.07.028
https://doi.org/10.1016/j.patcog.2014.07.028
https://www.jstor.org/stable/2333009
https://www.jstor.org/stable/2333009
https://www.cs.upc.edu/~gavalda/papers/adwin06.pdf
https://www.cs.upc.edu/~gavalda/papers/adwin06.pdf
https://www.cs.upc.edu/~gavalda/papers/adwin06.pdf
https://ieeexplore.ieee.org/abstract/document/1101146
https://ieeexplore.ieee.org/abstract/document/1101146
https://ieeexplore.ieee.org/abstract/document/1101146
https://doi.org/10.1016/j.neunet.2011.05.012
https://doi.org/10.1016/j.neunet.2011.05.012
https://doi.org/10.1016/j.neunet.2011.05.012
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.1016/j.sigpro.2003.07.018
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://www.kaggle.com/c/ieee-fraud-detection/
https://www.kaggle.com/c/ieee-fraud-detection/
https://www.kaggle.com/c/kkbox-churn-prediction-challenge/
https://www.kaggle.com/c/kkbox-churn-prediction-challenge/
https://www.kaggle.com/c/kkbox-churn-prediction-challenge/

	Introduction
	Related Work
	Proposed Method
	Important Properties
	Problem 1 - Detecting drift
	Problem 2 - Ranking features by amount of change
	Implementation

	Results
	Experimental setup
	Datasets
	Final remarks

	Conclusion
	References

