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ABSTRACT

Money laundering is a global phenomenon with wide-reaching social and economic consequences.
Cryptocurrencies are particularly susceptible due to the lack of control by authorities and their
anonymity. Thus, it is important to develop new techniques to detect and prevent illicit cryptocurrency
transactions. In our work, we propose new features based on the structure of the graph and past labels
to boost the performance of machine learning methods to detect money laundering. Our method,
GuiltyWalker, performs random walks on the bitcoin transaction graph and computes features based
on the distance to illicit transactions. We combine these new features with features proposed by
Weber et al. [1] and observe an improvement of about 5pp regarding illicit classification. Namely, we
observe that our proposed features are particularly helpful during a black market shutdown, where
the algorithm by Weber et al. [1] was low performing.

Keywords cryptocurrency, anti-money laundering, supervised learning, transaction graph, random walker

1 Introduction
Money laundering is a serious financial crime that consists
of the illegal process of obtaining money from criminal
activities, such as drug or human trafficking, and making
it appear legitimate. Cryptocurrencies, such as Bitcoin [2],
are particularly susceptible to money laundering schemes
due to their pseudo-anonymity and the relative lack of
control by authorities. Preventing money laundering is an
international effort and Anti-Money Laundering (AML)
laws have been trying to cope with the new threats posed
by criminals using cryptocurrencies [3, 4].

In 2019, Weber et al. [1] released the Elliptic data set.
It contains anonymized labeled Bitcoin transactions and
enables researchers to study illicit behaviour in cryptocur-
rencies. The data set consists of a time-series graph with
200K labeled bitcoin transaction nodes and tabular data
with 166 anonymized features describing each transaction.

*equal contribution.

Weber et al. [1] assesses the performance of several super-
vised learning algorithms on the task of detecting nodes
associated with illicit activities.

To improve existing supervised learning results found
in the literature, we propose a new set of features that
leverage the structure of the network and the existence of
hubs or pockets of illicit transactions. We extract these new
features with GuiltyWalker. This random walker traverses
a given network starting from a seed node and computes
features related to the distance of the seed node to other
nodes known to be illicit.

GuiltyWalker consists of two main components:

• Random walker: Given a transaction graph, a set of
seed nodes, and the number of desired random walks
for each of the seeds, GuiltyWalker samples random
walks for each seed node. Due to the temporal nature
of the graph, the walker only travels to past nodes (i.e.,
transactions) and stops at the first illicit node found or
when there are no more valid nodes to visit.
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• Feature extractor: Given a set of random walks for
each of the seeds, GuiltyWalker computes aggregated
features that summarize these walks, e.g., the average
number of steps needed to reach one illicit node or the
total number of different illicit nodes found.
In our experiments on the Elliptic data set, we ob-

serve that adding the features computed by GuiltyWalker
improves the performance of machine learning methods;
namely, we achieve a 5pp increased performance in F1-
score, when compared against machine learning methods
that use only the original anonymized features from Weber
et al. [1]. Furthermore, the gains in performance are more
pronounced during a black market shutdown, where the
original performance by Weber et al. [1] dropped signifi-
cantly.

This paper is organized as follows. Section 2 details
the implementation of GuiltyWalker and how we generate
new features from its output to enrich the data and con-
vey additional information to supervised learning methods.
Section 3 describes the experimental setup, and Section 4
the results consequently obtained. Section 5 presents the
related work. Finally, we set out the main conclusions in
Section 6.

2 GuiltyWalker
GuiltyWalker consists of a random walker that traverses a
given transaction network from a seed node and extracts
features based on the distance of that node to known il-
licit nodes. It includes two main components – a random
walker and a feature extractor, explained in the following
subsections.

2.1 Random Walker
The random walker receives as input the original transac-
tion graph G, a list of seed nodes, S ⊂ V (G), and the
number of successful random walks desired, k. Successful
random walks are explained later in this section. Guilty-
Walker’s output for each seed node s ∈ S is the list of
sampled random walks X s = {Xs

1 , X
s
2 , ..., X

s
k}.

A random walk Xs
i consists of a sequence of nodes

Xs
i = (x1, x2, ..., xn), such that x1 = s. Due to the tem-

poral nature of the transaction graph, the random walker
can only walk backward in time. That is, it is only valid to
go from node xn to node xm if xm represents a transaction
older than xn. This transaction network is represented as a
directed graph connecting older nodes to newer nodes by
an outgoing edge. Then, to address the former condition,
during the random walk process, GuiltyWalker chooses a
node uniformly at random from the incoming neighbors of
the current node. When GuiltyWalker is in a given state
of a random walk Xs

i = (s, x2, ..., xn), the process stops
and returns Xs

i as the final random walk if at least one of
the following criteria is met:

• xn is a known illicit node/transaction.
• The set of eligible nodes to pick from is empty. This

scenario happens when a given node has no incoming
neighbors and, consequently, the random walker has
no possible moves.

Otherwise, GuiltyWalker randomly picks the next node
to add to Xs

i , and the process continues.
Note that since the edges only connect older transac-

tions to newer transactions, there is always an end node
in any random walk. In other words, the properties of our
transaction graph guarantee that GuiltyWalker will not be
stuck in an endless loop.

The number of successful random walks, given by the
user as input, intends to set the desired number of random
walks ending in an illicit node from each seed node s ∈ S.
However, as discussed before, the random walker may find
a node with no incoming neighbors. In this case, a random
walker finishes traversing the graph without reaching an
illicit node. To ensure the number of desired successful ran-
dom walks, GuiltyWalker performs as many random walks
as needed, and only those are used for feature extraction.
As we mention in Section 2.2, one of the features extracted
from GuiltyWalker is the fraction of successful random
walks from the total number of random walks needed to
perform to ensure the number of successful ones. This is a
way of also considering the number of unsuccessful walks
made from each node, which may be informative.

It is important to note that some nodes in a transaction
graph might have no paths to any illicit node. Thus, it
is impossible to obtain successful random walks (as per
our definition) for those nodes. To avoid this problem,
GuiltyWalker first determines which nodes actually can
reach an illicit node. To do that, we first invert the direction
of the graph. Then, we use the descendants algorithm for
directed acyclic graphs from NetworkX [5] [6]. It returns
all nodes reachable from a source node s in the graph G.
Afterwards, we inspect if at least one of them is illicit. This
procedure is made for all nodes in the transaction graph,
and only those that can reach an illicit node are given as
input for the random walker.

2.2 Features Computation
The second component of GuiltyWalker receives the list
of random walks from each seed node and returns a data
frame of features corresponding to each transaction, sum-
marizing the random walks. In particular, GuiltyWalker
obtains the following features:

• Minimum size of the random walks (min);

• Maximum size of the random walks (max);

• Mean size of the random walks (mean);

• Standard deviation of the random walks sizes (std);

• Median size of the random walks (median);

• First quartile of the random walks sizes (q25);

• Third quartile of the random walks sizes (q75);

• Fraction of successful random walks from all the ran-
dom walks performed by Random Walker (hit rate);

• Number of distinct illicit nodes in the random walks
(illicit).

We also add information about the transaction nodes
with no possible paths to fraudulent nodes to the data
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frame of features, with all features set accordingly (see
Section 3.2), due to the lack of information regarding the
distance to an illicit node.

3 Experimental Setup
3.1 Elliptic Data Set
In this work, we use the Elliptic Data Set, a graph network
of Bitcoin transactions†. Elliptic, a company focused on
combating financial crime in cryptocurrencies, released
this data set.

The data set includes 203,769 node transactions and
234,355 directed edges, representing the flow of Bitcoin
currency (BTC) going from one transaction to the next.
Each transaction can be categorized into three classes:
"licit", "illicit" or "unknown", based on the category of the
entity that created it. Licit categories include exchanges,
wallet providers, miners, and financial service providers.
Illicit categories include scams, malware, terrorist orga-
nizations, and Ponzi schemes. From the total number of
transactions, 21% (42,019) are labeled as licit, 2% (4,545)
as illicit, and the remaining 77% (157,205) are unknown.

Besides the graph structure, the data set has 166
anonymized features associated with each transaction. The
first 94 relate to information about the transaction itself,
such as the time step, number of inputs/outputs, and trans-
action fee. The remaining features relate to aggregated
information about the direct neighbors of the transaction,
giving the maximum, minimum, standard deviation, and
correlation coefficients of each transaction.

Besides, a time step from 1 to 49 is associated with each
node. It represents an estimate of when the Bitcoin net-
work confirmed the transaction. The time steps are evenly
spaced with an interval of about two weeks and each one
contains a single connected component of transactions that
appeared on the blockchain within less than three hours be-
tween each other. Therefore, it can be considered that this
data set includes 49 directed acyclic graphs associated with
different sequential moments in time. Figure 1 provides an
idea of the structure of this data set.

3.2 Methodology
This section gives an overview of the models used in our
experiments and discusses our experimental setup. Follow-
ing Weber et al. [1], we perform a 70/30 temporal split
of training and test data, respectively, for all experiments.
Therefore, the train set includes all labeled samples up
to the 34th time step, and the test set includes all labeled
samples from the last 15 time steps, up to the 49th.

We use random forest for licit versus illicit prediction.
First, we train the model on the train set using all 166
features and evaluate it on the entire test set. We use the
scikit-learn [7] implementation of random forest, with 50
estimators, corresponding to the number of trees in the for-
est, and 50 max features, defined as the maximum number
of features each tree can have. By doing so, we mimic

†Available at https://www.kaggle.com/ellipticco/
elliptic-data-set

Figure 1: Structure of the data set (taken from [9])

the method in Weber et al. [1] enabling a fair comparison
of the results. We also set the random state to 0 for the
purpose of results reproducibility.

Then, we train a random forest model (using the same
parameters as before) using (i) only the new set of fea-
tures obtained by GuiltyWalker and (ii) both the features
obtained by GuiltyWalker and the original 166 features.
We extract the GuiltyWalker features after performing 100
successful random walks. Missing values for the transac-
tion nodes that cannot reach an illicit node are filled with
-1 values, except feature hit, which is filled with 0 values,
as it represents the fraction of random walks ending in a
fraudulent node. We see that the utilization of some of
these alternative sets of features improves performance in
Section 4.

To further improve the results, we filter the set of fea-
tures obtained by GuiltyWalker to keep just the most impor-
tant ones. This method characterizes every single feature’s
importance as the decrease in the performance score after
randomly shuffling its position in the set, and is called
Permutation feature importance [8]. After applying this
method and assessing every feature’s importance, the new
features kept for further classification purposes are hit, std,
illicit, max and mean. We also analyse the model’s perfor-
mance with these features together with the 166 original
ones in Section 4.

Similarly to Weber et al. [1], we evaluate the random
forest classifier’s performance with each set of features
using the F1-score for the illicit class, hereafter referred
to as illicit F1-score. This score is the weighted average
of precision and recall. Moreover, it is suitable for im-
balanced tasks, which is the case of our dataset (91% of
licit nodes and 9% of illicit ones). We also use the ROC
curve (and AUC value) and precision and recall measures
to evaluate the models’ performance.

4 Results
In this section, we present the results obtained by using
the standard model, random forest, with the 166 baseline
features (referred to as AF), as well as only the new fea-
tures extracted from GuiltyWalker (referred to as GWF)
and the former ones together with the latter (referred to
as AF+GWF). Furthermore, we show the results obtained
using the 166 features in conjunction with the new ones
obtained after performing feature reduction (referred to as
AF+GWF*).

3

https://www.kaggle.com/ellipticco/elliptic-data-set
https://www.kaggle.com/ellipticco/elliptic-data-set


C. OLIVEIRA ET AL.

Table 1: Illicit classification results using random forest, for
different features. AF refers to the original all features, GWF
refers features extracted from the GuiltyWalker, and, GWF*
refers to GuiltyWalker features after feature selection.

Illicit MicroAVG

Method Precision Recall F1 F1

AF 0.91 0.72 0.80 0.977

GWF 0.93 0.11 0.20 0.942

AF + GWF 0.93 0.76 0.84 0.981

AF + GWF* 0.97 0.77 0.85 0.983

Table 1 shows the testing results in terms of precision,
recall and F1-score concerning the illicit class. For the
sake of completeness, we also show the micro-averaged
F1 score.

An important thing to note from Table 1 is that the
GuiltyWalker features alone are not informative enough.
The F1-score value obtained using only these features is
very low (0.20). We can also observe higher precision,
recall, and F1-score when using GuiltyWalker’s additional
features, suggesting the importance of the graph structure.
Using GuiltyWalker features, we improved precision, re-
call, and F1-score by 2 percentage points (pp), 4pp, and
4pp, respectively.

In order to understand the importance of each one of
the features created, we performed feature importance, us-
ing the method described in the previous section. We kept
only the most important features to train together with
the original ones. Results show that by filtering Guilty-
Walker features and keeping only the most important ones
(hit, std, illicit, max and mean), the performance of the
model slightly improves (we improved F1-score by 1pp,
comparing with the model AF+GWF).

To give additional insights about the performance of
the new model AF + GWF* compared against the original
model, we plot the ROC curve of both models.

Note that the ROC curve shows the trade-off between
sensitivity/ recall and specificity. Moreover, the area under
the curve (AUC) can be seen as a measure of separability.
In other words, it represents how much a model is capable
of distinguishing between classes. Therefore, from the
observation of Figure 2, we can infer that both models
are quite good at predicting illicit nodes as illicit and licit
ones as licit. However, AF + GWF* is slightly better
(improves AUC value by 1pp). In particular, for very low
false positive rates, our method seems to be significantly
better.

In a real scenario, we would be more interested in low
false-positive regions of the ROC-curve since raising too
many alerts is not practical. With this in mind, we compare
the recall at specific low false positive rates, namely 1%,
5% and 10%, and AF+GWF* shows considerable gains
when compared against AF: recall@1% increases from

Figure 2: ROC curve associated with AF + GWF* and AF
models. Random baseline represented in red.

73% to 78% (5pp), recall@5% increases from 75% to 80%
(5pp), and recall@10% increases from 76% to 82% (6pp).
Therefore, while the gain of using GuiltyWalker’s features
is only 1pp in the full region, in the region of interest the
gain is considerably higher.

Figure 3: Illicit F1-score obtained with Random Forest, for
the standard 166 features and the new GuiltyWalker fea-
tures before and after feature selection.

As noted by Weber et al. [1], a sudden dark market
shutdown occurring at time step 43 extremely affects the
model performance. In particular, the random forest model
trained on the 166 features, from that time step forward,
cannot achieve an Illicit F1-score value above 0.25. The in-
troduction of the new set of features extracted from Guilty-
Walker improves F1 results in the entire test set (i.e., time
steps 35-49). However, this improvement is more notori-
ous after this dark market shutdown (from time step 43 to
49). In fact, from time step 43 to time step 49, we observe,
on average, a F1 score improvement of about 10pp and
16pp with AF + GWF and AF + GWF* models, respec-
tively. Note that for time steps 48 and 49, both of these
models still perform poorly.

As we can see in Figure 3, both AF + GWF and AF +
GWF* models are able to reliably capture new illicit trans-
actions after the dark market shutdown, in comparison with
the original model. To understand the additional informa-
tion those models are capturing, we compute the confusion
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matrices of the models AF, AF+GWF and AF+GWF*. We
obtain 784, 828 and 831 true positives (referred to as TP),
respectively. We also determine the new TP found and the
ones lost, using AF + GWF and AF + GWF* models, in
comparison to the ones found training RF with the original
set of features. By doing so, we can verify that with the
new sets of features, AF+GWF and AF+GWF*, we found
48 and 50 new TP and lost 4 and 3 TP that the original
model could find, respectively.

Concerning the AF + GWF* model, we observe that,
for almost all new TP found, the features extracted from
GuiltyWalker (max, mean, std, illicit and hit) have positive
values. Only 2 of the 50 elements have -1 values regarding
max, mean, std and illicit and 0 with respect to hit. Recall
that these values indicate that the associated transaction
nodes have no possible paths to known illicit nodes.

This interesting fact lets us infer that the new set of
features adds some new information based on the graph’s
structure, which allows the model to make better predic-
tions. However, we have to notice that the fact that a given
node has a path to an illicit transaction does not necessarily
imply that it is also illicit and vice-versa. This information
alone is not enough to make good predictions concerning
the labels of the transaction nodes, as we verified from
the results obtained for the GWF model. Nonetheless,
it provides extra information to complement the original
features in a way that boosts performance of the overall
model.

5 Related Work

Besides the work of Weber et al. [1], which was the base-
line for our study, more recently, Lorenz et al. [10] pro-
posed active learning techniques to study the minimum
number of labels necessary to achieve high detection of
illicit activity in cryptocurrencies and tested them also on
the Elliptic data set. Thus, even though using a differ-
ent approach to the same problem, the authors did not
aim to achieve better results than the baseline. Moreover,
Alarab et al. [11] proposed an ensemble learning method,
using a combination of the given supervised learning mod-
els, and applied it on the Elliptic data set, improving the
baseline results. Although they improved upon existing
results, our results, using the new set of features, are better.
While Alarab et al. [11] achieves higher precision than us
(97.38% versus 96.5%), we achieve higher recall (76.7%
versus 72.2%), higher F1-score (85.47% versus 82.92%),
and higher accuracy (98.3% versus 98.06%).

As far as we know, previous work on the application
of graph-related features and, in particular, random walks,
in a supervised learning setting are scarce. Hu et al. [12]
worked with Bitcoin transaction graphs and used various
graph characteristics to differentiate money laundering
transactions from regular transactions. They actually found
that the main difference between them lies in their output
values and neighbourhood information. The authors also
evaluated a set of classifiers based on different types of
extracted features, namely immediate neighbours, curated
features, deepwalk embeddings [13], and node2vec em-

beddings [14] to classify money laundering and regular
transactions. This approach differs from ours as we are
not trying to embed the graph or a particular node’s neigh-
bourhood but instead to describe distances to a specific
target (i.e., malicious activity). Nonetheless, the descrip-
tive power of random walks in networks is still recognized.
Smriti Bhagat and Muthukrishnan [15] studied methods
based on the iterative application of traditional classifiers
using graph information as features, and methods that prop-
agate the existing labels via random walks. Moreover, con-
cerning the application of random walks in the context
of classification problems, Samer Hassan and Banea [16]
proposed a new approach for estimating term weights in a
document based on a random walk model. They showed
that the new random walk based approach outperforms
the traditional term frequency approach of feature weight-
ing. Therefore, with this work, we extend the existing
knowledge regarding random walks to improve classifiers’
performance in graph datasets.

6 Conclusion
In this study, we set out to improve the performance of
supervised models in an anti-money laundering classifi-
cation task. Given a transaction network, we propose a
method called GuiltyWalker that extracts information from
the structure of the network and the existence of past labels
to create new features for a supervised model. It consists
of a random walker that traverses the transaction network
starting from a seed node and a feature extractor that com-
putes features related to the distance of the seed node to
other nodes known to be illicit.

We test our method on a public dataset of Bitcoin trans-
actions published by Weber et al. [1]. Using a supervised
setting similar to the original authors as our baseline, we
showed that by training the same classifier considering
the original 166 features and the new ones extracted from
GuiltyWalker, we could obtain better results. In particular,
by filtering the features extracted from GuiltyWalker and
considering only the most important ones, the results were
even better. The performance differences were more notori-
ous for time steps associated with a black market shutdown,
where the baseline model performed poorly. Moreover, we
observed that the models that considered GuiltyWalker
features could reliably capture new illicit transactions that
were not captured by the model from Weber et al. [1].
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