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ABSTRACT

There have been several research works proposing new Explainable
AT (XAI) methods designed to generate model explanations having
specific properties, or desiderata, such as fidelity, robustness, or
human-interpretability. However, explanations are seldom evalu-
ated based on their true practical impact on decision-making tasks.
Without that assessment, explanations might be chosen that, in fact,
hurt the overall performance of the combined system of ML model
+ end-users. This study aims to bridge this gap by proposing XAI
Test, an application-grounded evaluation methodology tailored to
isolate the impact of providing the end-user with different levels
of information. We conducted an experiment following XAI Test
to evaluate three popular post-hoc explanation methods — LIME,
SHAP, and Treelnterpreter — on a real-world fraud detection task,
with real data, a deployed ML model, and fraud analysts. During the
experiment, we gradually increased the information provided to the
fraud analysts in three stages: Data Only, i.e., just transaction data
without access to model score nor explanations, Data + ML Model
Score, and Data + ML Model Score + Explanations. Using strong sta-
tistical analysis, we show that, in general, these popular explainers
have a worse impact than desired. Some of the conclusion high-
lights include: i) showing Data Only results in the highest decision
accuracy and the slowest decision time among all variants tested,
ii) all the explainers improve accuracy over the Data + ML Model
Score variant but still result in lower accuracy when compared with
Data Only; iii) LIME was the least preferred by users, probably due
to its substantially lower variability of explanations from case to
case.
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1 INTRODUCTION
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Figure 1: End-users’ average decision accuracy vs. average
time to make a decision for each variant tested in our evalua-
tion experiment of post-hoc explanations. We used balanced
samples of positive and negative instances, therefore, a ran-
dom decision process would have 50% accuracy.

1.1 The evaluation problem in Explainable AI

The interest in ML models’ explainability has been growing in the
last years, as a counteractive effort to the current AI black-box
paradigm, coupled with increased public scrutiny and evolving
regulatory law [1-4]. However, this growth in Explainable AT (XAI)


https://doi.org/10.1145/3442188.3445941
https://doi.org/10.1145/3442188.3445941
https://doi.org/10.1145/3442188.3445941

FAccT °21, March 3-10, 2021, Virtual Event, Canada

research work has not been accompanied by effective evaluation
methodologies [5]. The field is still in its early stages.

Even though every persona interacting with a black-box ML
model may benefit of model explainability, each persona has a spe-
cific role, objectives, actions at disposal, background, domain knowl-
edge, and, consequently, different explainability requirements [6-8].
As a result, the evaluation of XAI methods must be performed with
the target persona and the associated task in mind [7, 8]. Notwith-
standing, in seminal works of XAI methods, it is common to see
introduced one or multiple ad-hoc evaluation setups, mostly focused
on ideal explanations desiderata [9-12]. In some cases, user exper-
iments are simulated [9] or even completely discarded from the
evaluation step [13]. As a consequence, there is a lack of systematic
comparison between different methods accurately and exhaustively.
These reasons culminate, ultimately, in general skepticism about
the reliability and usefulness of XAI methods, especially when the
application is of high responsibility.

1.2 The impact of showing explanations

In this work, we focus on XAI evaluation having the end-user as
target persona. We consider the end-user as the decision-maker, the
human-in-the-loop, who usually is a domain expert, such as a judge,
a doctor, or a fraud analyst. We argue that, for end-users, the value
of explanations is heavily determined by how useful they are to the
associated decision task and, for that reason, that their evaluation
should be made by measuring their impact in the performance of
the end-users. This implies involving end-users in the evaluation
process, in a setup with a real task and real data. Additionally,
metrics should reflect directly the users’ performance, e.g., how
accurate the decisions are, or how fast they are made.

We propose XAl Test, an application-grounded evaluation method-
ology tailored to isolate the impact of gradually providing different
levels of information to the end-user. A useful XAI method pro-
duces explanations that improve the overall performance of the
combined system of ML model + end-user. To perform a reliable as-
sessment, XAl Test requires testing different combinations of data,
model score, and XAI methods in a real task with real end-users.
Specific performance metrics must be defined (e.g., accuracy or
decision time), the agreement between end-users is considered on
each variant, and user perception captured through questionnaires.
Lastly, statistical tests are employed to detect significant differences
between each variant.

1.3 The experiment

Using XAI Test, we conducted an empirical evaluation in the task
of fraud detection in financial transactions. We employed three
different post-hoc explainers and observed their impact on human-
in-the-loop performance, measuring accuracy, recall, false positive
rate (FPR), and decision time. We additionally collected the users’
perception of usefulness, variety, and relevance of each presented
explanation.

We quantified and isolated the impact of the different interacting
parties in a Human-AlI collaborative setting by following a three-
stage evaluation approach with increased information. Figure 1
shows how the average accuracy of the decision varies with the
decision time for each of the evaluated variants. We observe a clear
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trade-off between effectiveness and efficiency as the end-user gets
access to additional ML model information. In particular, we observe
that when no model-related information is shown to the end-user
(i.e,, Data Only), although slower, leads to more accurate decisions.
Conversely, the accuracy obtained in the mid-level information
stage (Data + ML Model Score) yields faster decisions but much
worse accuracy - a result that is partially improved by adding model
explanations.

2 RELATED WORK

In this section, we provide an overview of the current evaluation
paradigm in XAl research. In particular, we briefly discuss the often
considered desiderata, as well as the different techniques used to
measure them. We end by enumerating a few representative state-
of-the-art evaluation approaches and by describing how these fail
to convey a robust analysis of the real impact of XAI methods in
real-life Human-AI decision-making systems.

2.1 Desiderata

Most research work on XAI measures some kind of proxy of intu-
itive desiderata for the ideal explanation, such as fidelity or faith-
fulness [9, 14], which states that surrogate models that are used to
obtain post-hoc explanations should be able to mimic the behavior
of the explained ML model; robustness or stability [15], which
measures whether similar input instances get similar explanations;
human-interpretability or comprehensibility [16], which mea-
sures how easily a human interprets the result from the explanation
method.

Despite being common sense that a good explanation must have
high fidelity, be robust, and be intelligible, those characteristics
by themselves do not say much about the actual benefit of hav-
ing an explanation in a specific real-world application, nor do the
measurements completely represent those characteristics.

Previous work often assumes that a model is interpretable
because it belongs to a certain family of models — such as sparse
linear models, decision trees, and rules lists [17-20], or additive
models [21-23] - and the only focus when generating explanations
is on the accuracy of those models. These explanations are directly
derived from interpreting the ML model parameters. Most of the
times, these over-simplified definitions of model intelligibility are
detached from the requirements of real-world applications [24]. In
general, these simpler models have much lower predictive accuracy
than other more complex models, such as deep neural networks
or tree ensembles. Only in a few high-stakes tasks (such as credit
scoring [25]) is the complexity of an ML model viewed as an actual
limitation, and only in these particular cases, there is no alternative
to simpler, more intelligible models.

Several works assess fidelity as a measure of the quality of
an explanation. Fidelity has been assessed both directly [9, 14, 26,
27], by measuring differences in predictions of the surrogate and
explained models, as well as indirectly [11], by measuring how
well a human can predict the output of a ML system with and
without being exposed to explanations. Again, this is another metric
detached from real-world impact of showing an explanation to a
given persona, as it focuses on how well an XAI model approximates
the function learned by the original ML model.
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Other works defend the importance of robustness. It is mea-
sured by directly computing how much the output of an explanation
method changes with its input [28, 29] or by showing the sensi-
tivity of explanations to adversarial attacks [30]. However, these
metrics are not directly related to how an explanation might help
the end-user to better perform their task.

Interpretability is also assessed by measuring how approxi-
mate a XAI method explanation is to an explanation produced by
a human expert [3, 31]. Those approaches are somehow restricted
to tasks where the behavior of humans is intuitive, and generally
close to the ground truth (such as problems in natural language
processing and computer vision), but may not be suitable to com-
plex predictive tasks based on tabular data, where the analysis has
to take into account multiple features and interactions, making the
task harder and less intuitive.

The way XAI desiderata is being interpreted and measured is
disperse and lacking in consensus, as shown by the different meth-
ods to measure the same property. Several problems are pointed to
current practices, such as non-overlapping and discordant motiva-
tions and objectives for interpretability [24], attributing the same
level of interpretability to ML models originating from the same
model class [32], or the lack of evaluation of XAI methods with the
intended end-users [33].

Frameworks have been developed [7, 34] as an attempt on tack-
ling the challenges of XAI evaluation, however, these frameworks
are still recent and have yet to see wide adoption. The field is
missing a systematic and objective way of comparing explanation
methods [35, 36], which promotes research practices where each
work uses customised metrics and desiderata that are thought to
be the most adequate, encumbering the choice of XAI methods for
a given task. This is especially important in scenarios of real-world
Human-AI decision-making systems, where XAI methods may have
a greater impact.

2.2 Evaluation Practices

While many ad-hoc evaluation setups have been used to empirically
validate research on XAI methods, these either found on idyllic
desiderata or overlook the human-in-the-loop and their explainabil-
ity needs. In an attempt to standardize the existing XAI evaluation
approaches, Doshi-Velez and Kim [5] propose a taxonomy to cate-
gorize the different types of XAl evaluation practices. In their work,
the authors subdivide the evaluation practices into three distinct
groups, depending on whether it resorts to humans or not and
on the task they are being employed on. The first group encom-
passes automated evaluation on proxy tasks and is designated as
functionality-grounded evaluation. Experiments in this category
may try to simulate human behavior [11], and apply these simu-
lations to real tasks, such as fraud detection [37]. Other works do
not consider the human factor as part of the evaluation [9, 14].
Both other groups of evaluation methods use humans in the pro-
cess of evaluation but differ on the task being done. If the evaluation
task is a simplified proxy of a real task, the method is designated
human-grounded evaluation, while if the task is in a real-world set-
ting, the method is deemed application-grounded evaluation. These
methods introduce the human component in the evaluation loop to
collect feedback in the form of questionnaires, surveys, interviews,
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performance at the task, among others. Their focus, however, shifts
from how humans perceive and interact with the explanations in
human-grounded evaluation, to how it affects the whole system
performance in application-grounded evaluation.

The evaluation of explanations through experimentation has
been done in several past works. Most experimental studies use
proxy tasks with real human subjects, i.e., human-grounded experi-
ments, such as trivia answer [38], clinical prescription simulation
[16, 20], detection of deceptive reviews [39], comparison between
human feedback and explainer output [3], or human prediction of
model output on unseen instances based on the explanation of the
model behavior [11].

By analysing the experiments conducted in other works, there is
a clear gap in evaluation using real tasks with real end-users. More
often than not, explanations are employed in mocked tasks, and
the results obtained can not be generalized to high responsibility
real-world tasks. Simulating human behavior is prone to human
bias, since in many cases it depends on the developers’ own in-
tuition of the problem, and may diverge from reality, producing
unrealistic results. Additionally, seldom do these experiments com-
pare explanation methods, but rather test different visualizations
or output types for these methods, which emphasizes more on the
presentation rather than explanations’ content.

3 EVALUATION METHODOLOGY

The evaluation of the true impact of a given explanation in the end-
user experience is not an easy task. Ideally, it should be focused on
objectively measuring its utility (or usefulness) in the users’ decision
making process. This should rely on the collection of metrics from
real users while performing real tasks on real data.

We propose XAI Test, an application-grounded evaluation me-
thodology that relies on realistic settings and statistical tests to
robustly assess and compare the explanations’ utility of different
XAI methods, using metrics that correspond to the performance
of the user. Rather than evaluating explainability through idyllic
desiderata, we opt for evaluating it through metrics that quantify
the true impact in the human decision-making.

The methodology consists of the following steps: (1) formulate
the hypotheses; (2) outline the experimental setup; (3) define the
statistical tests to report the results with; (4) conduct the three
stages of the experiment; and (5) apply statistical tests to obtained
measurements.

With this methodology, we aim to find answers to a set hy-
potheses (e.g., is method A more efficient than method B? Is it more
accurate?). In the case of an XAI experiment, these hypotheses
are related to the utility of the explanations and how they impact
the end result of a given task. To support or reject the formulated
hypotheses, it is necessary to objectively measure users’ perfor-
mance at the task (e.g., through accuracy, or decision time). It is
also important do define other elements of the experiment, includ-
ing the explainers, ML models, corresponding configurations to
test, number of users that partake on the experiment, datasets, and
other task-specific details, such as experiment scheduling and used
software. Equally important for ensuring a robust evaluation is
the confidence of the reported results. To this end, we define the
appropriate statistical tests as well as their parameters, which are
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significance level, statistical power, effect size, and sample size. A
prior knowledge of the distributions is required to choose these
parameters. In Section 3.3, we elaborate on the choices made in
terms of hypothesis testing. The ensuing step is then to conduct
the experiments in a way that isolates the impact of explanations in
the decision making process. For this reason, we advocate for the
execution of, at least, three stages, each providing added levels of
information: (1) Data only, (2) Data + ML Model Score, and (3) Data +
ML Model Score + Explanations. Finally, the last step of the proposed
methodology concerns the collected results and their analysis.

The following sections describe the methodology employed in
the evaluation of XAI methods. This includes the way explanations
are employed, the measured metrics, and the battery of statistical
tests to determine any significant difference.

3.1 Metrics Choice

The metrics choice is task-specific. In Human-Al cooperative sys-
tems where the true data labels are known, it is possible to combine
this information with the user decision to compute performance
metrics (based on the confusion matrix), such as recall, FPR, pre-
cision, or false omission rate (FOR). These measures allow us to
objectively quantify the impact of different components (e.g., model
score and/or different explanation types) in the human decision-
making process. In practice, accuracy, recall, and FPR are better
choices, because the denominator either depends on the sample
size, or on the number of label positives and label negatives of the
sample. Since these are constant over the course of the experiment
and do not depend on the number of predicted positives and nega-
tives (as it is the case for a metric such as precision and FOR), we
can determine a priori the exact sample size for each metric.

In most systems, time is also a determining factor and should,
therefore, be monitored during system modifications. In Human-AI
decision making systems, explanations serve to help the human-
in-the-loop to make a faster decision, by pointing them to what
the model perceives to be the most important information for the
decision. Consequently, this is an important aspect to measure
when discerning the impact of explanations in decision-making
processes.

Another relevant point, despite being more subjective, is the
user’s perception of the explanation quality, including its relevance
and usefulness. For this reason, we propose a set of predefined
five-point Likert-type scale questions, specified in Figure 2.

Finally, often times, decisions diverge from user to user. We ex-
pect the addition of more information (e.g., model scores and/or
explanations) to mitigate such differences. To accurately measure
this effect, we use an agreement set where a subset of the data is
shared between users with the intent of computing the metrics of
agreement. We use Fleiss” Kappa [40] as the agreement metric be-
cause our experiments will incorporate multiple users. Additionally,
we calculate the average agreement, which is the average pair-wise
agreement between users.

3.2 Experimental Stages

While, in the first stage of the experiment, humans only have access
to instance-specific information (feature data), in the second the
human is provided with information of the model score, calibrated
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Figure 2: Questionnaire performed to the users after each
instance with explanation.

Strongly Strongly
disagree agree

1) The explanation covered all
the relevant information to help
me make a decision.

[1]2]3[4]5]

2) The explanation helped me

)T (2345
ecide faster.

3) The explanation was useful

s [1]2]3[4]5]
to help me make a decision.

for simplification. Consequently, users may sometimes perceive it
as a measure of how confident the model is about predicting a given
class: scores closer to 1 or 0 express confidence, whereas scores
around 0.5 convey more uncertainty.

The third stage of the experiment involves, in addition to the
ML model score, the explanations. How and which information to
show for which explainer should be defined in the experimental
setup. There are many degrees of freedom when configuring an
explainer: the explainer type (e.g., self-explainable, post-hoc), the
number of features to consider, how to represent the explanation
(e.g., feature contributions, heatmaps, scores, visualizations) as to
minimize the cognitive load during the task execution. Another
important aspect to pay attention to are the biases that may arise if
explanation methods are distinguishable due to some factor (e.g.,
their representation). Mitigating their representational differences
is, therefore, a preventive step towards isolating the quality and
relevance of the explanation methods from all the other possible
visual factors.

3.3 Statistical Tests

The appropriate choice of a statistical test depends on two factors:
(1) the metric distribution and (2) the end-goal of the test. Most
statistical tests aim at identifying significant differences between
measured averages of performance metrics in different scenarios
(control vs treatment). In this case, we use of Chi-squared test [41]
for multiple group comparison of instance-level binary metrics,
such as accuracy, recall, and FPR. Conversely, for continuous per-
formance metrics like decision time, we use a non-parametric test
named Kruskal-Wallis H [42] to validate whether the samples be-
long to the same underlying process. This test is particularly suited
for non-normal distribution of continuous variables.

We are interested in comparing pairs of groups and, specifically,
in running comparisons between each variant and the control group.
In these cases, we use Chi-squared test with the pairs to be tested
in the performance values, and the Mann-Whitney U test [43] on
continuous data. P-values must also be corrected for family-wise
error rate with the Holm-Bonferroni method [44].

In order to quantify the perceived usefulness and relevance of
the explanations measured through the questionnaire, we aim to
identify distribution differences between different explainers for
the proposed questions. We find the Kruskal-Wallis H to better suit
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this goal when comparing multiple variants. To report the results of
paired tests, we apply the Kolmogorov-Smirnov test [45] corrected
with the Holm-Bonferroni method [46].

4 EXPERIMENTS

We employ our proposed application-grounded methodology, XAI
Test, to evaluate and compare different explanation methods in a
real-world decision-making task: fraud detection in payment trans-
actions. We had access to a real fraud prevention system comprising
a deployed ML model that predicts the risk of fraud for each pay-
ment transaction in a given online retailer. The fraud analyst is
responsible for accepting or declining payment transactions for
which the ML model is more uncertain about (the score is within
a review band). This decision-making task is performed through
a web interface in which the fraud analyst can inspect details of
the payment transaction (e.g., shipping address, billing email, time
since last transaction) which represents the feature data (i.e., Data
Only) together with the risk score, given by the ML model, and an
explanation.

While business requirements aim for more effective and efficient
decisions, often, the model information is not sufficient to meet such
criteria (e.g., disagreement between fraud analysts and ML model
or even mistrust in the model predictions). In an attempt to bridge
this Human-AI gap, we conjecture that explanations promote better
human performance in such predictive fraud task. Therefore, the
prime goal of this experiment is to assess the real impact of showing
explanations to real humans (the fraud analysts) interacting with a
real ML model.

4.1 Experimental Hypotheses

As the first step of XAI Test, we formulated our hypotheses. Since
we used a production system without permission to modify the
ML model, we focus on the evaluation of post-hoc explanation!
methods. With this in mind, we set out to answer the following
hypotheses:

e HI. Showing fraud analysts the ML Model Score improves
their performance ? over Data Only;

e H2. Showing post-hoc explanations significantly improves
human performance over Data Only and/or Data + ML Model
Score;

e H3. Explanations from different post-hoc explainers impact
humans differently; Assuming that humans trust the ex-
planations, some explainers promote more effective and/or
efficient decisions;

e H4. Each post-hoc explainer is perceived differently in terms
of relevance, usefulness, and diversity;

e H5. Showing explanations increases fraud analysts agree-
ment over the same set of transactions;

e H6. Showing model score information increases fraud ana-
lysts agreement over the same set of transactions.

!Explanations produced by post-hoc methods.
?Defined in Section 4.2.
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4.2 Experimental Setup

We evaluate the above hypotheses using metrics indicative of the
fraud analysts’ performance in terms of both efficiency and efficacy
at the decision-making task.

Metrics: We use the average decision time (of fraud analysts)
as an efficiency measure and we use accuracy, FPR, and recall as
measures of their effectiveness. Moreover, to address H4, we also
measure their perceived relevance, usefulness, and diversity of the
explanations through the questionnaire in Figure 2.

ML model: As an application-grounded evaluation of a real-
world system, we used the fraud prevention system’s ML model: a
Random Forest’s variant [47].

Explainers: Among the various XAI methods for tabular data,
we opted for two of the most commonly used post-hoc explainers:
LIME [9] and SHAP [3]. In particular, we leveraged the fact that
the model is a decision tree ensemble to use the tree-based SHAP
explainer - TreeSHAP [13]. We also included a third explainer specif-
ically tailored for tree-based algorithms, known by ML practitioners
as Treelnterpreter [48]. In terms of hyperparameters, we ran a few
sensitivity tests to determine the most appropriate hyperparameters
for the proposed task. From this analysis, we concluded that both
SHAP and Treelnterpreter could be used with their out-of-the-box
parametrization, whereas LIME had to be tweaked, specially, due
to its stochastic nature3. Thus, besides the random seed, we also
set the number of perturbed samples to 5k.

Explanation format: The explanations format for the three ex-
plainers consists of pairs of feature-contribution. We decided to only
display the top 6 pairs based on contribution value. Unlike other
tabular explanation formats, such as decision lists and decision sets
[20]) the feature-contribution format benefits from its readability,
simplicity and visualization flexibility.

Furthermore, to create a seamless experiment, we used this out-
put’s simplicity to homogenize the explanations representation
across explainers. Given a set of feature-contribution pairs, we: (1)
sort it in descending order by absolute contribution value?, and
(2) transform it into a human-readable format. This transforma-
tion comprises mapping the feature name to a natural language
description plus parsing the feature value (e.g., converting time
from seconds to days).

We further added a color-based visual cue to reflect the changes
in the associated suspicious risk (score): negative contributions
represented with green, as they contribute for lower scores and
consequently legitimate transactions, and, conversely, positive con-
tributions represented with red. Figure 3, illustrates an explanation
shown to a fraud analyst during the experiments.

Users: Three professional fraud analysts partook in the experi-
ment. They were all experienced users of the fraud detection system
used in the experiment.

Data: Two different samples were considered: (1) a training sam-
ple, derived from the same data set used to train the ML model,
and (2) an experiment sample, from the production period of the
ML model. We used the former as the background for LIME (to
obtain information about features distributions). To create it, we

3LIME’s internal local fidelity metric showed improvements exclusively upon varia-
tions on the number of perturbed samples.
“Higher contributions reflect more important features.
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(9 Decline

vl Explanations - Top Ordered Feature Contributions

Amount is -

Time since last events of shipp addr occured is 5 minutes and 35 seconds

Bill, shipp and IP city mismatch is True
Payment brand is -
Hour of the day 5-

Time between user created data and trx data is Not available

Figure 3: Visual representation of an explanation, as viewed
by fraud analysts during the experiment (obfuscated to pre-
serve privacy).

randomly sampled 100k transactions from the model’s training set.
Conversely, the sample for running the experiment itself, dubbed
experiment sample, was extracted from the model’s production pe-
riod (November 2019), for which we had fraud labels. We extracted
a stratified sample to attain 50% fraud prevalence.

To replicate a real scenario for the experiment the sample ex-
clusively comprises transactions that lie in the review band, i.e.,
transactions with higher model uncertainty. The final experiment
sample size totals 1300 transactions. In the following section, we
disclose how these transactions were distributed across the different
experiment stages.

4.3 Experiment Outline

We conducted all three stages of the experiment, as XAI Test sug-
gests (see Section 3.2). Given that each stage added levels of infor-
mation, we decided to run them in a way that allows fraud analysts
to incrementally stabilize their mental model of the task (as they
adapt to new information within the system). This leads to the
following experiment outline:

(1) Data only: information exclusively about the transaction
(payment details and history) is available;

(2) Data + ML Model Score: both transaction data and the model
score are available;

(3) Data + ML Model Score + Explanations: all of the above infor-
mation is complemented with an explanation (from LIME,
SHAP, or Treelnterpreter) of the model score.

As our baseline, we considered the stage where every informa-
tion except the data was withheld from fraud analysts (Data only
stage), as it allows us to isolate and quantify the real impacts of
different information types in the human’s performance in (and
understanding of) the task. In the absence of prior knowledge about
the metrics distribution for this particular task, we used a total of
400 transactions to conduct the two initial stages of the experiment
(200 for each stage). Each of these samples were created without
replacement from the experiment sample (stratified by fraud label
to keep fraud prevalence at 50%). We found 200 transactions to
be a good compromise between the pressing time and business
constraints (e.g., availability of the analysts) and the quality and
rigor of the experiment.
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On the other hand, we leveraged the results obtained in the initial
experiments (Data only and Data + ML Model Score) to compute
the sample size required to obtain significant results at the desired
power, f3, significance level, a, and effect size, §. We set § = 15
because we found it to be a good compromise between sample
size and the minimum difference detection. Moreover, we defined
B =1-a = 0.9, since we perceive both error types associated
with statistical hypothesis testing (type I and type II) to be of equal
importance during the experiment. In the end, and assuming the
proxy estimates of the analysts’ distribution were representative
of their true performance, we concluded that a sample with 300
transactions would suffice for rigorously running the third stage
of the experiment, the Data + ML Model Score + Explanations stage.
Each sample was divided equally for each analyst. Each analyst
reviewed the same number of transactions for every explainer in
the experiment (100 transactions per explainer), which guaranteed
the results were equally balanced and that the experiment results
were not skewed towards a specific explainer or user.

To address hypothesis H5, we defined a subset of each sample to
belong to an agreement set. In practice, this implies that all users
reviewed the same exact transactions of the agreement set. This set
accounted for about 12.5% of the transactions on every experiment
stage.

5 RESULTS AND DISCUSSION

In this section, we evaluate how various levels of information affect
the human’s decision-making process in a fraud detection task. We
first examine the impact of disclosing information about the ML
model score when compared to withholding that information. We
also analyse the impact of showing different post-hoc explanations
on top of the information about the ML model score. We discuss
the obtained results in terms of human effectiveness and efficiency
at detecting fraudulent transactions.

Table 1 shows the experiment results for the conducted three-
stage experiment (each stage reflects a group). Besides isolating the
contributions of the different system components, this table also
comprises the evaluation results of three popular post-hoc expla-
nation methods, being one of the most comprehensive evaluation
and comparison of XAI methods to date.

Our results show that data alone induces better decisions, while
showing model scores or model scores with explanations signif-
icantly improves the decision time. Our results suggest that, in
practical settings where decision speed is a main requirement, ML
models explanations carry a significant speed up in human decision-
making, as depicted in Figure 5. Additionally, data alone carries a
better result in both accuracy and recall, registering even a signifi-
cant difference in accuracy when compared to the group with model
score, as depicted in Figure 4. Finally, we provide insights about
the variability and agreement of the different post-hoc explainers
based on the produced explanations for the experiment.

5.1 Data + ML Model Score

We first analyse the difference in between human decision-making
with and without presence of the ML model score. We evaluate H1
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Table 1: Performance, time and agreement metrics for all variants of the experiment. Statistical significance is
tested between each explainer and each of the two groups that do not show explanations or only among explain-
ers. * indicates significant difference with Data Only; no statistically significant difference was detected between
each explainer and the Data + ML Model Score; * indicates significant difference with all other explainers. The

agreement metric is Fleiss’ Kappa.

Metrics

Explai le Si A,
Group xplainer Sample Size accuracy (%) recall (%) FPR (%) time (s) greement
Data Only - 200 62.00 35.87 15.74 59.50 0.41
Data + * *
ML Model Score - 200 51.02 25.00 19.57 44.61 0.02
LIME 300 58.59 27.03 10.07 50.29* 0.53
Data +
ML Model Score +  Treelnterpreter 300 56.52 25.55 1267 43.03** 0.30
Explanations
SHAP 300 59.73 31.08 12.00 45.72* 0.15

(see Section 4.1) in terms of the time taken to make decisions, accu-
racy, recall, and FPR, whereas H6 is examined under the agreements
measures mentioned in Section 3.1.

5.1.1 Showing end-users the ML Model Score improves av-
erage decision time over Data Only. Our results show that
withholding the model score leads to significantly slower decisions.
Using the Mann-Whitney U test, we detect a significant difference
in times between Data Only and Data + ML Model Score (p < 0.01)
(Table 1). A more thorough analysis of the performance metrics
(see Figure 5) reveals an approximate decrease of 25% of the rela-
tive average time to decide, when presenting information about
the model score. When considering time as the performance
metric, these results corroborate HI (as defined in Section 4.1).

5.1.2 Showing end-users the ML Model Score deteriorates
their accuracy over Data Only. Our results demonstrate that
withholding information about the model score significantly im-
proves the user’s predictive accuracy. Table 1 shows that, after
the application of the Chi-squared test, significant differences arise
between Data only and Data + ML Model Score (p = 0.08). These
results contradict HI (when using accuracy as the performance
metric). This might derive from the fact that the instances being
reviewed are in a score band near the decision threshold, and, there-
fore, have a higher associated uncertainty when being classified.

5.1.3 Showing end-users the ML Model Score does not sig-
nificantly improve recall or FPR over Data Only. Our results
do not exhibit statistically relevant improvements in terms of other
users’ performance metrics like recall or FPR. Considering these
as the desired performance metric reveals to be inconclusive and,
therefore, does not suffice to support nor reject H1.

In general, Figure 4 shows a degradation in all metrics derived
from the confusion matrix, when comparing the ML Model Score
group to Data Only, as both recall and accuracy registered a loss of
10% and FPR registered an increase of around 4% percentage points.

5.1.4 Showing the ML Model Score decreases agreement.
The consensus among fraud analysts was shown to decrease as

we incorporated more information. This is visible in Table 1, as
the measurement of Fleiss’ Kappa went from 0.41 in the Data Only
variant to —0.02 in the Data + ML Model Score variant. The former
reflects a setting where users, on average, agreed on the trans-
action label 76.67% of the times, whereas in the latter they only
agreed on 63.33% of the times. This refutes the idea that showing
more information would guide (or shape) users thinking process
by giving hints about relevant aspects and, consequently, disproves
hypothesis Hé.

We hypothesize this large difference is due to (1) too small agree-
ment set and (2) high proportion of transactions classified as legiti-
mate (i.e., 77%), leading to extra sensitivity to disagreements about
fraudulent transactions.

5.2 Data + ML Model Score + Explanations

We further examine the performance differences between decision-
making tasks involving Data Only and Data + ML Model Score +
Explanations. In particular, we examine the impact of three distinct
variants of the Data + ML Model Score + Explanations group: LIME,
SHAP, and Treelnterpreter.

5.2.1 Showing post-hoc explanations significantly improves
end-users average speed over Data Only. Figure 5 shows the
confidence intervals of decision time for each group. By running a
multiple group comparison using the Kruskal-Wallis H test, we ob-
serve statistically significant differences between explainer-based
variants and the Data Only group (p < 0.001), which corrobo-
rates H2 (when the performance metric is the reviewing time). We
identify significant differences for every explainer, when they are
compared pair-wise to the Data Only variant by using the Holm-
Bonferroni corrected Mann-Whitney U tests we obtain p-values
between 1 x 10~ (for LIME) and 0.09 (for TreeInterpreter). When
comparing against Data + ML Model Score, all explainers show
increased decision time but this is not statistically significant.

5.2.2 Different post-hoc explainers impact the end-users de-
cision speed differently. We also examine paired comparisons



FAccT °21, March 3-10, 2021, Virtual Event, Canada

Accuracy (%)

Recall (%)

Sérgio Jesus, Catarina Belém, Vladimir Balayan, Joao Bento, Pedro Saleiro, Pedro Bizarro, and Joao Gama

FPR (%)

T
e

i
—

|
"

45 50 55 60 65 20 25 30

e Data Only

Data + ML Model Score

35 40 45 10 15 20 25

e ||[ME === Treelnterpreter SHAP

Figure 4: Confidence intervals (90%) for each performance metric of all variants of the experiment. The interval is calculated
through the beta distribution for the estimated parameter p of each metric.

between the different explainers to address H3 in terms of the deci-
sion efficiency. We detect significant differences when comparing
LIME to Treelnterpreter (p < 0.01) and SHAP to Treelnterpreter
(p =0.091). In other words, results show that among the three
evaluated post-hoc explainers, Treelnterpreter potentiates signifi-
cantly faster decision-making processes. These results corroborate
H3 when considering the average time review as the fraud analysts’
measure of performance.

Average time to decide (seconds)

—

i
1
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Figure 5: Confidence intervals for the average decision time
of each variant. The interval represents the Standard Error
of the sample multiplied by 1.64, representing a 90% Confi-
dence Interval, centered around the mean group’s mean.

5.2.3 Showing post-hoc explanations does not significantly
improve end-users efficacy. In addition to efficiency, we exam-
ine the impacts of showing explanations to the human decision-
making in terms of accuracy, FPR, and recall. As visible in Figure 4,
all evaluated explainers are associated with deteriorated values for
the predictive-accuracy metrics, except for the error-based metric,
FPR. Effectively, although the values are not statistically significant,
all explainers seem to lead to less false positives. Furthermore, as
visible in Table 1 the multiple group comparison Chi-squared test
provided no conclusive results and, consequently, no paired tests
were conducted between the explainer variants. Notwithstanding
the lower accuracy and recall values of each explainer when com-
pared to the Data Only variant, explainers were still able to improve
upon the results obtained for the Data + ML Model Score variant,
although this improvement was also not statistically significant.
The obtained results disprove H2 and H3, when the considered
performance metrics are either accuracy, FPR, or recall.

Notwithstanding these results, we emphasize that, performance-
wise, the selected decision time metric is the most volatile metric
and, therefore, the most susceptible to vary during the experiment
due to some unaccounted external factors (such as connectivity
issues or distractions).

5.24 Post-hoc explainers are perceived differently in terms
of relevance, usefulness, and diversity by the end-users. We
perform a multiple group comparison Kruskal-Wallis H test to
compare the results obtained with the questionnaire in Figure
2. While no significant result is detected for the first question
(p = 0.238), the test reveals significant changes relative to the sec-
ond and third questions, that is, "The explanation helped me review
faster" (p < 0.001) and "The explanation was useful to help me make
a decision." (p < 0.01)). Figure 6 shows the distribution of the an-
swers to the three questions posed during the last stage of the
conducted experiment, discriminated by explainer. We observe that
Treelnterpreter is the explainer with most positive answers (blue),
especially in the third question. We also notice the high number of
neutral answers, neither, and practically non-existing number of
extreme answers, ie., strongly agree or strongly disagree. We can
further observe, in statistical terms, that in the second question
(middle), LIME registers a significant difference when compared to
both SHAP (p < 0.01) and Treelnterpreter (p < 0.01). On the other
hand, in the third question, no paired test registered a significant
difference. In this question, Treelnterpreter is the explainer with
results closer to significance. These results support H4, as each
distinct explainers are indeed perceived differently by the users.

525 Showing explanations increases end-users agreement
over the same set of transactions. We also examine the impacts
in the agreement of the fraud analysts’ decisions. Table 1 shows
LIME to be the only explainer capable of improving the agreement
beyond the Data Only group. However, when compared with the
Data + ML Model Score variant, all explainer variants seem to evoke
more consensus among the fraud analysts. Quantitatively speaking,
LIME achieves by far the best agreement result with a Fleiss’ Kappa
of 0.53, and fraud analysts agree, on average, on 84.62% of the deci-
sions. Also promising, but still inferior to the agreement achieved
when all information is withheld from the user, is Treelnterpreter
with a Fleiss” Kappa of 0.30, and with an average agreement of
69.23%. Lastly, SHAP exhibits the lowest value of agreement, with a
Fleiss’ Kappa of 0.15, an average agreement of 64.10%. These results
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Figure 6: Distribution of answers to feedback questionnaire.

partially corroborate H5, as LIME actually seems to improve ana-
lysts agreement. However, the same does not verify for the other
explanation methods.

5.3 Variability in Explanations

We analyse the variety and agreement of the explanations used
during the third stage of the experiment. To this end, we collect
the explanations of the different evaluated explainers (LIME, SHAP,
and Treelnterpreter) for every transaction of the experiment. Each
explanation comprises six feature-contribution pairs which are the
basis of the explanations.

FAccT ’21, March 3-10, 2021, Virtual Event, Canada

To better comprehend the explainers’ behavior, we measured
the diversity of their explanations. This implies comparing how
many of the 111 available features are actually being used to create
the explanations: LIME showed the least diversity, using 34 fea-
tures (30.6% of the total set of features), followed by SHAP, which
used a total of 89 features (80.2% of the total set of features), and
Treelnterpreter, which used a total of 107 features (96.4% of the
total set of features). Lower values in the number of used features
translates into less variability in the explanations. This also ends up
reflecting on the occurrence rate of the most popular feature (i.e.,
the feature used the most times to explain an instance), which in
LIME occurred in 89.7% of the transactions, as opposed to the most
common feature in Treelnterpreter which only occurred 45.3% of
the explanations.

The agreement between explainers is calculated by how many
features two given explainers choose to integrate the explanation
normalized by the length of the explanation. For example, if in
an instance LIME and SHAP had chosen 2 features in common to
explain the instance score, and the other 4 features were different
for each explainer, the agreement in that instance would be 33.3%
for that pair of explainers.

Comparing explanations between SHAP and Treelnterpreter
produces an agreement of 53.0%, i.e., 53.0% of the features used by
SHAP for a given explanation were also used by Treelnterpreter.
Likewise, the agreement for the other explainers’ pairs produces an
agreement of 41.0% (between LIME and SHAP) and 23.5% (between
LIME and Treelnterpreter). These results show that the output
explanation for a given instance depends on the post-hoc method
chosen to explain it, i.e., different explainers will choose different
features to explain a given instance.

5.4 Study Limitations

In this section, we outline the main limitations of our empirical
study. We have a constraint in the number of participants as well
as their availability for the experiment, which in turn limits the
sample size for the experiment. This has an impact on the effect
size, or the rates of errors for the statistical tests. To perform tests
with higher sensibility to smaller changes on the measured metrics,
it is necessary to increase the sample size.

Another limitation of the study is that we cannot control all the
possible external factors, such as difficulty of the instance, user
attention to the tested information (data, model score, and expla-
nations), connectivity speed, among other factors. However, the
mitigation of the effects of such unaccountable factors is only pos-
sible when running large scale randomized controlled trials.

This study showed no significant differences in performance
metrics derived from the confusion matrix between LIME, SHAP,
and Treelnterpreter, using the same explanation format. A relevant
study is to explore how different configurations and visualizations
alter the observed results.

6 CONCLUSION

The recent developments of XAI methods has not been accompa-
nied by a robust and practical assessment of their true impact on
decision-making tasks. More often than not, the quality of these
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methods is measured through proxy desiderata (e.g., fidelity or ro-
bustness), hence, failing to convey the information of the actual
impact on the end-users’ performance (e.g., accuracy or decision
time). The lack of awareness towards the performance of the whole
model + explanations + end-users may result in sub-optimal deci-
sion processes.

With this work, we hope to fill in this gap by proposing XAI
Test, an application-grounded evaluation methodology suited for
detaching the true impact of different information levels (e.g., model
score, explanations) in Human-Al collaborative systems. Following
XAI Test, we conducted a user study to evaluate three well-known
post-hoc explainability methods (i.e., LIME, SHAP, Treelnterpreter)
on a real-world fraud detection task, encompassing 3 fraud ana-
lysts, an ML production model, and real-world data. Throughout
the experiment, we progressively elevate the level of information
presented to the analysts in three stages. We begin with informa-
tion exclusively about the data (Data only) and subsequentially
unveil information about the ML model score (Data + ML Model
Score) and, in the last stage, about the explanations (Data + ML
Model Score + Explanations). In the course of the experiment, we
collect measures of the performance of the analysts in function of
the revealed information. These include the duration, the accuracy,
recall, and FPR of the decisions made, as well as the user’s feedback
on the perceived utility of the explanations.

To the best of our knowledge, this is the first study to perform
a quantitative benchmark of the impact of different explanation
methods on human decision-making performance on a real-world
setting (real task, real data, real users). We complement this analysis
with a strong battery of statistical tests to strengthen the validity
of our conclusions. Obtained results reveal that, when provided
with Data only information, fraud analysts decide significantly
better but also more slowly when compared to variants that include
information about the ML model. In this regard, our results show
explanations (Data + ML Model Score + Explanations) to slightly
improve the accuracy upon the Data + ML Model Score but to still
fall short of the accuracy achieved in the Data only setup. Finally,
amongst the three evaluated explainers, the analysts identify LIME
as the least-favoured explanation method, potentially, due to its
low explanations diversity.

In general, our results seem to suggest an existing trade-off
between effectiveness and efficiency as the analysts are provided
with added levels of information. This raises awareness towards
blindly selecting popular post-hoc explanation methods in real-
world decision-making settings.
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