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What is the smallest sample that we can label 
to train a high performance model 

in a system deployed for the first time?
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When is Active Learning Useful?

When labels take time to arrive (e.g., depend on user complaints)

When labeled data is costly to obtain (e.g., manual labeling by humans)

When lots of unlabeled data is available

⇒  These conditions often hold for new clients in credit card fraud detection
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Our Main Contributions:

An Active Learning (AL) annotation strategy for datasets with orders of magnitude 

of class imbalance, in a cold start streaming scenario.

An Outlier-based Discriminative AL approach (ODAL) to be used as warm-up in a 
3-stage sequence of AL policies. 

An empirical study of policy sequences for real world credit card fraud datasets
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Our Outlier-based Discriminative AL approach (ODAL)

Discriminative AL principle: Create a labeled pool distributed indistinguishably 
from unlabeled pool

1. Create auxiliary label to identify unlabeled pool
2. Train discriminative model
3. Score unlabeled pool
4. Select high score instances

Shortcoming: Scales with unlabeled pool size

Our proposal:  ODAL

1. Train an outlier detection algorithm on the labeled pool (small ⇒ fast training)
2. Score unlabeled pool
3. Select unlabeled instances that are outliers relative to the labeled pool

Unlabeled Data
Labeled 

Data
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Experiments on credit card fraud datasets show:

Our method can reach high performance model quicker than standard AL policies.

Gains over random policy reach 80%.

Similar performance than optimistic 
baseline with only 2% to 10% of labels.

Access to all labels
Several datasets & domains



Thank you
See paper for further details
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Experiments on credit card fraud datasets show:

Our method can reach high performance 
model quicker than standard AL policies.

Gains over random policy reach 80%.

Same performance with only 
2% to 10% of the labels.


