
Active learning for online training in imbalanced data streams
under cold start

Ricardo Barata

ricardo.barata@feedzai.com

Feedzai

Miguel Leite
∗

miguel.leite@feedzai.com

Feedzai

Ricardo Pacheco
∗

rjgpacheco@gmail.com

Feedzai

Marco O. P. Sampaio

marco.sampaio@feedzai.com

Feedzai

João Tiago Ascensão

joao.ascensao@feedzai.com

Feedzai

Pedro Bizarro

pedro.bizarro@feedzai.com

Feedzai

ABSTRACT
Labeled data is essential in modern systems that rely on Machine

Learning (ML) for predictive modelling. Such systems may suffer

from the cold-start problem: supervised models work well but, ini-

tially, there are no labels, which are costly or slow to obtain. This

problem is even worse in imbalanced data scenarios. Online finan-

cial fraud detection is an example where labeling is: i) expensive,

or ii) it suffers from long delays, if relying on victims filing com-

plaints. The latter may not be viable if a model has to be in place

immediately, so an option is to ask analysts to label events while

minimizing the number of annotations to control costs. We propose

an Active Learning (AL) annotation system for datasets with orders

of magnitude of class imbalance, in a cold start streaming scenario.

We present a computationally efficient Outlier-based Discrimina-

tive AL approach (ODAL) and design a novel 3-stage sequence of

AL labeling policies where it is used as warm-up. Then, we per-
form empirical studies in four real world datasets, with various

magnitudes of class imbalance. The results show that our method

can more quickly reach a high performance model than standard

AL policies. Its observed gains over random sampling can reach

80% and be competitive with policies with an unlimited annotation

budget or additional historical data (with 1/10 to 1/50 of the labels).

CCS CONCEPTS
• Computing methodologies → Active learning settings; Su-
pervised learning by classification; Online learning settings;

KEYWORDS
active learning, data streams, cold start, high class imbalance

ACM Reference Format:
Ricardo Barata, Miguel Leite, Ricardo Pacheco, Marco O. P. Sampaio, João

Tiago Ascensão, and Pedro Bizarro. 2021. Active learning for online train-

ing in imbalanced data streams under cold start. InWorkshop on Machine
Learning in Finance (KDD ’21), August, 2021, Singapore. ACM, New York,

NY, USA, 9 pages.

∗
Work developed while employed at Feedzai.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Singapore
© 2021 Association for Computing Machinery.

1 INTRODUCTION
Currently, supervised Machine Learning (ML) models are essential

and widespread tools in electronic services, where vast amounts

of data are generated daily in domains as diverse as finance, en-

tertainment or consumer goods. Those models are often central

in decisions that enhance system efficiency, user experience or

even safety. Their performance relies heavily on the quality of the

data they are trained on and, specifically for the supervised setting,

suitably labeled data is crucial. In many domains, labeled data is

expensive to collect, often requiring human annotation. In such

scenarios, it is common that the system collects large amounts of

unlabeled data with a limited budget for annotations, so it becomes

essential to select the most informative samples for labeling.

Active Learning (AL) addresses the problem of selecting the

smallest possible sample of data to label and train a high perfor-

manceMLmodel. In this paper we study AL-based annotationmeth-

ods for real-time data streams, to train a high performance model

with no historical data, i.e., in a cold start scenario, for datasets
with a large class imbalance. AL powered annotation in streaming

can be particularly useful in the financial fraud detection domain

where, often, there is a considerable delay between the event and

the collection of the true label (e.g., through client complaints or

reports from financial institutions) unless a human analyst is con-

sulted. In our study, we are interested in real world datasets of credit

card transactions, for which there is a high class imbalance. In this

setting we aim to address several important questions, namely:

• Which AL policies can more efficiently produce a high perfor-

mance model with a small budget of events to label?

• How much better is AL compared with random sampling?

• Dowe have empirical guarantees on the stability of a given policy,

i.e., how small is the variance of its learning curve?

• How many labels are needed for a high performance model?

We test well known AL policies, as well as our proposed sequences

of policies that are especially designed for imbalanced datasets, to

achieve a high performance, with reduced variance, in few itera-

tions. Our main contributions are:

• A new computationally efficient approach to the Discriminative

Active Learning method [6] named Outlier based Discriminative

Active Learning (ODAL) – Section 3.2.2.

• Two variations of uncertainty sampling policies using an epis-

temic uncertainty measure, as well as a measure based on the

fraud rate percentile – Section 3.2.3.

• A 3-stage sequence of policies using ODAL as warm-up suited

for highly imbalanced datasets – Section 4.3.

1

ar
X

iv
:2

10
7.

07
72

4v
1

 [
cs

.L
G

]
 1

6
Ju

l 2
02

1

KDD ’21, August 14–18, 2021, Singapore Barata, et al.

• An extensive set of experiments on four credit card transactions

datasets, to compare and rank AL policy sequences, to identify

the best AL setup for fraud detection – Section 5.

2 RELATEDWORK
Various AL methods have been proposed and surveyed in the lit-

erature in the last decades, [21, 28]. We now discuss the methods

most relevant for our experiments.

2.1 Data Querying
In this study, all AL policies will be based on pool based sam-

pling [21], i.e., an unlabeled data pool is available whose instances

must be prioritized, on each AL iteration, for annotation. The num-

ber of instances in one querying request, i.e., the batch size, is a
parameter that may influence how fast AL improves the model.

As for data availability, usually a large amount of unlabeled

instances is provided, as well as either a small initial labeled data

pool or no initially labeled data. In contrast, in our experiments we

focus on the cold start scenario with no historical data. Furthermore,

typical AL setups involve scenarios where the data source is static.

Instead, we are interested in a streaming data scenario, where the

unlabeled data pool grows – when a AL selects a new batch of

queries, more data will be available than on the previous iteration.

Some studies have appeared in the literature discussing AL meth-

ods in a streaming data scenario [2, 3, 9, 10, 15, 25, 29–32]. Notably,

Carcillo et al. [2], investigated several AL methods for a credit card

fraud dataset. Instances were selected once a day with AL, accord-

ing to a fixed budget. For some of their methods, a budget was also

reserved for semi-supervised labeling using a model trained on the

labeled data. In contrast, we consider scenarios where several small

batches of instances are processed during the day to exploit the

collected labels more frequently to update the AL policy, which is

important to avoid the selection of many similar instances in one

large batch. Furthermore, we will present a detailed analysis of AL

curves in the fraud domain, to provide a more complete understand-

ing of its effectiveness for fraud detection, as well as investigate new

policies that were not considered in reference [2]. In reference [2]

no analysis of AL curves was presented, nor of their variability,

which is essential to observe the boost in ML model performance

at early stages of the AL process. Finally, most other studies in our

literature review, cited above, are either: i) focused on applying AL

to address concept drift, or ii) not focused on highly imbalanced

problems, or iii) not focused on dealing with the cold start problem.

2.2 AL Policies
The central ingredient in an AL based annotation system is the

policy determining which instances are the most relevant to label.

We categorize the types of policies tomirror our three-stage strategy

to efficiently train a model from cold start (discussed in Section 3.2):

(1) Cold policies (unsupervised): In a first stage, while no la-

beled data is available, a method is used to select the first

instances for labeling before AL can start – Section 2.2.1.

(2) Warm-up policies: After some labels are collected, there

may be a transient period with only labels of a given type

available (e.g., only negative class for binary classification)

or too few labels to train a supervised policy – Section 2.2.2.

(3) Hot policies (supervised): These are the most common, and

they make full use of the collected labels to differentiate

classes and select the best instances to query – Section 2.2.3.

2.2.1 Cold policies. AL studies in the literature often focus on

scenarios where a labeled pool is available to start the AL process.

However, in many real world scenarios one may be faced with a

system that has just been deployed and contains no labeled data [8].

In that case, the initial sampling can only be guided by the unlabeled

instances. The simplest choice is to randomly sample an initial

batch of instances – Random Policy. Another simple option is to

use an unsupervised learning method to build a representation of

the unlabeled data and select outliers – Outlier Detection Policy.
The latter is useful if one or more of the classes behave as outliers.

Another criterion, is to sample denser regions of the feature space

(which relates to the Density-Weighted policies – see Section 2.2.2).

2.2.2 Warm-up policies. These exploit the distribution of the fea-

tures in the unlabeled and labeled pools without using the labels.

Discriminative Active Learning (DAL) [6] is based on the principle
that a good labeled pool should be difficult to discriminate from

the unlabeled pool. In this approach, the labeled pool instances

are labeled positive and the unlabeled pool instances are labeled

negative. Then a binary classification model is fit to discriminate

between pools. Finally, the unlabeled pool is scored and instances

with low scores are queried (i.e., those easy to discriminate from

the labeled pool). This can be computationally heavy because it

always trains on all available data (labeled and unlabeled). Though

this can be mitigated by randomly sampling the unlabeled pool, we

will propose a lighter method, in Section 3.2.2.

Density-weighted methods: In the next section we will see that hot
policies use informativeness criteria that are also prone to detecting

outliers,
1
whichmay not be of interest in AL – such outliers may not

provide information that improves theMLmodel. Density-weighted

methods aim to select instances that cover well the most dense areas

of the data distribution. This can be achieved, e.g., through density

estimation [5] or clustering algorithms [16, 27]. These methods

tend to be heavier and harder to implement in streaming because

the unlabeled pool may grow and its distribution may drift in real-

time. Due to these additional complexities in applying density based

methods in streaming we leave their analysis for future work.

2.2.3 Hot policies. We now review policies that use the labels in

the labeled pool to select queries based either on: i) an uncertainty

measure, or ii) expected changes in model error or parameters.

Uncertainty Sampling: This is the most common active learning

technique, originally discussed by Lewis and Gale [11]. It trains

a machine learning model on each AL iteration using the labeled

pool instances. Then the unlabeled pool is scored and the queries

are ranked by a measure of uncertainty related to the distance to

the classification boundary. Instances closer to the classification

boundary are assumed to be more likely to improve the model. A

common criterion is to select instances with the highest expected

entropy over the possible class labels given the model scores as the

probabilities. For binary classification those instances have scores

closest to 0.5. This method assumes scores that are well calibrated

1
E.g., uncertainty sampling assumes that the most relevant instances are closer to the

decision boundary, however, those instances can, simultaneously, be outliers.

2

Active learning for online training in imbalanced data streams under cold start KDD ’21, August 14–18, 2021, Singapore

3. Train Model

Data

Data Stream

Unlabeled
Pool

Labeled
Pool

1. Select Instances

Current
Policy
Current

Switching
Criterion

2. Label the
selected instances

Fetch Data

Send
Labels

Fetch Data

Fetch DataPolicy 1

Policy 2

(...)

Switching Criterion1

Switching Criterion2

Policy 3

Get Next Batch

AL LOOP

Process Startup

Fetch
Initial Data

Automatic Feature Engineering

Unsupervised Feature Selection

Fetch
Schema

Figure 1: Experimental framework architecture overview.

probabilities, whichmay not hold. Nevertheless, studies show that it

is an efficient AL uncertainty measure ([28] and references therein).

Query by committee: Query by committee, [23], is a simple but

potentially computationally heavier method that combines knowl-

edge from an ensemble of ML models, chosen by the user, where

each model in the ensemble is trained on the labeled data pool and

used to score the unlabeled data. A measure of disagreement among

the models is computed for each instance based on the model scores.

Instances rank higher for higher disagreement. Often, it also as-

sumes that the scores are well calibrated probabilities. In Section 3.2,

we discuss an alternative criterion based on rank disagreement.

Expected Model Change, Error Reduction and Variance reduction:
These methods compute, for each possible query, an estimate for the

expected value of either: i) the change in model parameters, [22],

ii) the error reduction in the model predictions, [20], or iii) the

variance reduction in model predictions, [4]. The basic principles

are, respectively, to query the instance that is expected to change

the model the most, reduce the total prediction error the most, or

reduce the variance of the predictions the most. Expected error

reduction is often impractical, requiring retraining the model for

all label assignments for each possible query.

3 METHODS
An illustrative diagram of the architecture of our experimental

framework is presented in Figure 1. Its main components are:

• DataComponents: This contains aData Stream collecting events

in real time and storing them in the Unlabeled pool. The Labeled
pool stores labeled data. Both pools start empty.

• Process Startup: This is responsible for training pre-processing
pipelines, enriching the raw incoming data stream with features

and applying feature selection and/or dimensionality reduction.

• AL loop: This iteratively collects labels and trains the model. At

each step the Data is accessed and manipulated as follows:

(1) Select Instances: A batch of unlabeled events is selected for

labeling. An arbitrary sequence of AL policies chained together

with switching criteria is possible (left of block 1), though in

our experiments we only consider up to 3-stage sequences.

(2) Label Instances: Here we simply move the instances selected

for labeling from the Unlabeled to the Labeled pool and reveal

their label (our data sources contain the true label). In a live

system analysts would provide the labels.

(3) Train Model: The labeled data is used to train and evaluate the

ML model. We continuously iterate this loop up to a maximum

fixed duration – e.g., until a week of unlabeled data is collected

by the stream and a corresponding fixed number of labels is

collected according to the number of batches and the batch

size. Because we use historical data to simulate the streaming

scenario, we can evaluate the sequence of AL models, obtained

while iterating, on a separate test set offline – see Section 4.

3.1 Startup and preprocessing
In our experiments we train random forest (RF) classifiers, which

require a suitable set of engineered features. In a cold start scenario
wemay not know in advancewhich features are useful to predict the

target. Thus, we apply a preprocessing pipeline using, as minimal

information, the schema of the raw data fields collected by the

system. The two transformations in the pipeline are described next.

Automatic Feature Engineering: We use Feedzai’s AutoML tool,

which can generate automatically a feature engineering plan based

only on the semantics of the raw fields. This only requires a se-

mantic mapping file to tag the raw fields (specifying, e.g., grouping

entities, numerical fields, or the semantics of fields to be used in

pre-defined types of feature engineering operations), together with

a specification of window durations to compute profile feature ag-

gregations (e.g., count of transactions per card in the last hour).

Further details on Feedzai’s AutoML are found in reference [14].

Unsupervised Feature Selection: The automatic feature engineer-

ing plan may produce several hundreds of features. The data science

performance of the ML model may degrade if too many noisy or

redundant features are provided. Furthermore, from a system per-

spective, computing and saving more features than necessary is

computationally wasteful. Therefore it is useful to apply feature

selection or another dimensionality reduction strategy. We have

considered three options. The simplest one, Domain knowledge re-
duction, consists of asking a domain expert to suggest the most

relevant features. The second option, Pairwise Correlations Reduc-
tion, uses a training set to evaluate feature correlations, starts with

the most correlated numerical features pair, removes one of the

features and continues iteratively. The process stops when a (small

enough) threshold value of pairwise correlation is attained or until

a pre-specified number of features is left. A third option is to apply

Principal Component Analysis (PCA) [26] to reduce the dimension-

ality of the numerical features while explainingmost of the variance

in the data. Both Pairwise correlation and PCA Dimensionality reduc-
tion require a sample of unlabeled data. In real applications this is

often not an issue, because unlabeled data is easy to collect through

an initial waiting period (e.g., we use one day in our experiments).

In our study, we performed a limited set of experiments on

one dataset to compare the three methods, which indicated that

PCA dimensionality reduction is a suitable method that typically

performs as well or better than the other methods. Due to space

limitations, and since the results were not very different among

methods, we will only present results with PCA preprocessing.

3

KDD ’21, August 14–18, 2021, Singapore Barata, et al.

3.2 Policies
We now discuss our specific choice of policies for the experiments.

3.2.1 Cold policies: We test a Random policy, but also and Out-
lier detection policy. For the latter we use an isolation forest [12]

trained on the unlabeled pool and use the isolation score to rank

its transactions from most outlier-like (to query) to most inlier-

like. Experiments using this method will be identified with the

tag OutlierDetect. In all policies that require an isolation forest we

use the scikit-learn [18] implementation with 100 trees, using all

features to grow each tree, and a maximum number of samples per

tree which is the minimum between 256 and the total number of

samples. Cold policies are also baselines for AL (if used as a single

policy, i.e., one-stage sequence, throughout the experiment).

3.2.2 Warm-up policies. Regarding warm-up we propose a new

method, Outlier Discriminative Active Learning (ODAL), where an

outlier detection model is trained on the labeled pool, and is then

used to score the unlabeled pool to find the greatest outliers relative

to the labeled pool, which are selected for querying. In typical AL

scenarios the labeled pool is much smaller than the unlabeled pool.

Therefore this provides a computationally lighter policy, because

it can be trained on the labeled pool only, in contrast with regu-

lar Discriminative AL (DAL) where the (large) unlabeled pool is

also used to train a discriminative model to differentiate between

the labeled and unlabeled pool. Furthermore, another advantage

of ODAL over DAL can be observed by expanding the posterior

probability distribution, 𝑝 (0|𝑥) for an instance with features 𝑥 to

be in the unlabeled pool (denoted by 0) using Bayes theorem:

𝑝 (0|𝑥) = 𝑝 (𝑥 |0)𝑝 (0)
𝑝 (𝑥 |0)𝑝 (0) + 𝑝 (𝑥 |1)𝑝 (1) =

(
1 + 𝑝 (𝑥 |1)𝑝 (1)

𝑝 (𝑥 |0)𝑝 (0)

)−1
. (1)

Here 𝑝 (𝑥 |0), 𝑝 (𝑥 |1) are, respectively the distributions of the unla-

beled and labeled pool and 𝑝 (1) = 1−𝑝 (0) is the fraction of labeled

data. In Eq. (1) we can see that, up to the constant 𝑝 (1)/𝑝 (0), the
DAL score prioritizes instances both with high density in the unla-

beled pool and low density in the labeled pool, which may not be

desirable if the labeled pool is missing examples in lower density

regions of the unlabeled pool. On the other hand ODAL only mod-

els 𝑝 (𝑥 |1) so it favours, by design, that the instances to be selected

are not well represented in the labeled pool regardless of how well

they are represented in the unlabeled pool. For problems with a

large class imbalance this is especially important. Thus, ODAL is

both computationally feasible for our large scale experiments and

less biased by the unlabeled data distribution. Finally, as we will

see in Section 5, ODAL warm-up adds an earlier boost to the learn-

ing curves in imbalanced datasets. In the experiments, we use the

same isolation forest outlier detection algorithm mentioned in Sec-

tion 2.2.1. Thus, the labeled pool instances are ranked by isolation

score and the ones that rank higher are selected for querying.

3.2.3 Hot policies. We now describe the supervised policies.

Uncertainty Sampling: As discussed in Section 2, the most com-

mon uncertainty criterion consists of selecting instances with the

highest expected entropy which assumes that the ML model scores

provide well calibrated probabilities. This may not hold for many

algorithms and is especially bad for high class imbalance [19].

One approach to this issue is to perform scores calibration, [7, 17],

but it requires a separate calibration set (or cross validation). In

the case of AL, this implies further splitting a labeled pool that is

already small so, instead, we introduce an alternative for binary

classification. We first observe that the score function of most ML

algorithms is a monotonic function of the class posterior probability.

Thus we still expect that instances with higher scores will have a

higher probability of being positive. Given a sample of data, the

classification boundary can be equivalently characterized by a score

percentile, i.e., a position in the sorted set of scores. We then note

that the percentile of the classification boundary, for a perfect

classifier that knows the labels would be equal to the negative class

rate. This motivates an alternative uncertainty criterion, which is

independent of scores calibration, where the uncertainty boundary

is at the percentile given by the estimated negative class rate. Then

the uncertain instances are considered to be the ones closest to that

boundary. In the experiments, we will show results with the classic

entropy criterion, as well as with our fraud percentile criterion.
Query By Committee: In this policy we introduce an alternative

measure of disagreement, among the models in the committee, that

is insensitive to whether or not the scores output by each model

are calibrated as probabilities. This can be important if the commit-

tee contains a mixture of models with and without a probabilistic

outcome. For each model in the committee, we rank the unlabeled

pool instances by descending model score and compute the aver-

age pairwise absolute difference of ranks between any two models.

Instances on which the models disagree will have very different

rankings across models. In the experiments we use a committee

with: a Random Forest with 100 trees and maximum depths of 3, an

L2 regularized Logistic Regression, a Gaussian naive Bayes classifier,

and a Gradient Boosting Classifier with 100 estimators.
2

Expected Model Change: For this method, we use the simplest

approach in the literature. First a gradient-based classifier is trained

on the labeled data pool. Then, for each unlabeled instance, the

expected gradient norm for the given instance is computed assum-

ing that the model parameters are near an optimum of the model’s

loss function. Finally, the unlabeled pool instances are ranked so

that instances with larger expected gradient are prioritized. In our

implementation, we use a logistic regression with L2 regularization.

Expected variance Reduction and Epistemic Uncertainty: The ex-
pected variance reduction method estimates the variance of the

model predictions. This is tightly related to the notion of epis-

temic uncertainty discussed in the literature [24]. The latter is the

reducible part of the total uncertainty composed of i) the model

uncertainty (or bias), which is due to the restricted choice of hypoth-

esis space when fixing a type of model, plus ii) the approximation

uncertainty (variance), which is reducible by collecting more data.

The remaining uncertainty (also know as aleatoric) is intrinsic to

the data generating process and can never be removed.

The uncertainty sampling criterion that uses the entropy of

the model scores is precisely the total uncertainty criterion. The

epistemic uncertainty, being the difference between the total and

aleatoric uncertainty, may give a better measure of uncertainty for

AL, because it is only sensitive to the reducible components. Though

2
We use scikit-learn [18] implementations for all mentionedMLmodels unless stated

otherwise. For the unspecified hyper-parameters we use the library defaults.

4

Active learning for online training in imbalanced data streams under cold start KDD ’21, August 14–18, 2021, Singapore

Dataset Class Imbalance Sampling fraction

Bank 1 ∼ 10
−4

11.0 %

Bank 2 ∼ 10
−3

3.0 %

Payment Processor ∼ 10
−2

2.5 %

Merchant ∼ 10
−2

100.0 %

Table 1: Dataset properties:Due to privacy reasons we do not
provide further details (see detailed description in text).
it still contains the uncertainty from the bias, it can bemore tractable

than variance estimates, which often rely on analytic expressions

assuming differentiability. In our analysis, we train models using

a random forest classifier. This is non-differentiable but it offers a

convenient way of controlling regularization, using a large number

of shallow trees, which is important to train on small labeled pools.

The epistemic uncertainty for random forests is estimated from the

outputs of each tree in a random forest, [24].

4 EXPERIMENTS
In this section we present results of experiments with several real

world credit card fraud datasets.

4.1 Data preparation
We cover several representative use cases in the fraud detection do-

main, namely card issuing banks (Banking), platforms that process

online payments for several merchants (Payment Processors) and

single merchant online platforms (Merchants).

In Table 1 we provide some properties of each data set, which

contain fraudulent (positive) and legitimate (negative) transactions.

The fraud rates span several orders of magnitude, from an extremely

large imbalance (Bank 1), to moderate imbalances of a few percent.

The datasets contain raw fields collected when transactions arrived

to a fraud detection system in real-time, including the monetary

amount of the transaction, the timestamp of the event, several

identifiers (e.g., card ID), categorical fields and the fraud label.

The volume of transactions varies across datasets from a few

millions to several hundreds of million per year. To speed up our

experiments, we applied undersampling to reduce the volume to

a manageable (and similar) level for all datasets. This allowed us

to scale up our experiments to cover many different types of poli-

cies and to perform a more extensive Temporal Cross Validation

(TCV) over a longer period. We applied the sampling before fea-

ture engineering to speed up the preprocessing. Fraudulent and

non-fraudulent card id entities were randomly sampled separately

with the sampling rate indicated in Table 1 (this preserves the fraud

rate) and all transactions were kept for each sampled card id. This

keeps complete card histories, allowing to compute sliding window

profiles that are important to characterize the event [1].

We applied automatic feature engineering, which generated be-

tween 600 and 800 features depending on the dataset – see Sec-

tion 3.1. The categorical fields were encoded both with ordinal

and frequency encoding and standardized to zero mean and unit

variance similarly to other numerical features. The remaining pre-

processing is scenario specific – details provided in Section 4.2.

4.2 Experimental Setup
In this section we describe details of the experimental setup that

are common to all data sets. In Figure 2 we present a diagram of

Test 1

Fold 1 Test 2

Train 1 Fold 2 Test 3

Train 2 Fold 3 Test 4

Train 3 Fold 4 Test 5

Train 4 Fold 5

1 week Train 5

Figure 2: Time folds for the five simulation periods in the
experiments (see detailed description in the text).

the various slices of data for any given data set. We define Folds,
which consist of 8 week periods (two pairs of 4 weeks). Within each

fold, the first 4 weeks (green), are used for model training, whereas

the following 4 weeks (blue), are for model evaluations. The Train
period is used differently according to the type of experimental run.

We define two types of scenarios:

- AL in streaming: This case mimics a scenario where the AL system

is deployed for the first time in streamingwithout access to previous

data. Since the goal is to collect labels quickly to obtain a good

model, without waiting for labels to arrive by other means, applying

AL is typically relevant for a few weeks. Thus, we only reserve the

two last weeks of the Train period (darker green: weeks 3 and 4)

to sample data with AL for training (weeks 1 and 2 are used for

the strong optimistic baseline discussed next). The Test set allows
us to measure the model performance after the deployment of the

last AL model. In practice, for most data sets we only use one week

for AL training (except for Bank 1 which, due to the extreme class

imbalance, needs a longer period for the performance to stabilize).

- Optimistic Baseline: Here we train a strong model that has access

to all data and labels (weeks 1 to 4: light plus dark green). The goal

is to obtain a “best case scenario” upper bound performance.

Each experiment (either AL or Optimistic Baseline) consists of

35 repetitions of the train-test procedure with different pseudo-

random number generator seeds. This allows us to assess the stabil-

ity of the AL policies by observing the variance of our metrics. We

choose 35 seeds as a good trade off between run time and a high

chance of observing a wider range of values around the center of the

distribution. As displayed in Figure 2, we repeat each experiment

in 5 different folds (Train+Test pairs) to observe the robustness of

the AL procedure against temporal variations.

4.2.1 Streaming AL Training. In all AL experiments we include

an initial waiting period of one day to simulate the collection of

some unlabeled data to fit the pre-processing pipeline. This mimics

a realistic scenario of deployment with no previous data. To reduce

the number of numerical features generated by the AutoML pipeline

(which may contain redundant information) we apply PCA on

the numerical features. In preliminary experiments on Bank 2, we

checked that about 90 features can explain 99% of the data variance.

Then we decided to fix 90 features after PCA for all data sets to

keep the run time similar across experiments. In real life systems,

there are often performance constraints that impose such limits.

Observe that our pre-processing pipeline is trained on the first

day of unlabeled data, and used to transform all future data arriving

at the stream (Train or Test period). This is to mimic a day-1 system

deployment. However, after day-1, the pipeline could be updated

frequently but, for simplicity, we chose to fix it in our experiments.

For each run, several labeling iterations are processed after the

waiting period of one day, according to the diagram of Figure 1 –

5

KDD ’21, August 14–18, 2021, Singapore Barata, et al.

see Section 3. Therefore the unlabeled pool grows with time, as does

the labeled pool during the AL training iterations, whose growth is

indirectly controlled by the time assumed for the team of analysts

to label each queried batch of events. Thus, if the team is, e.g., a

single analyst taking one hour to review a batch, we assume that

one hour of new data is inserted in the unlabeled pool after the

batch is labeled. For simplicity we use a fixed batch size and a fixed

time to review corresponding to an overall review rate of 1000

events per day. The only exception is for Bank 1, where, due to the

extreme class imbalance, we assumed twice the daily budget.

Regarding theMLmodel to train on the AL labeled data, we chose

a highly regularized Random Forest (RF) classifier from the scikit-

learn library with a maximum tree depth of 3 and 200 trees (other

hyper-parameters set to defaults).We did a small study on Bank 2 on

two time folds, where we either, i) varied the number of trees up to

1000, ii) reduced or increased the maximum depth, or iii) used other

models with various different levels of regularization (Feed Forward

Neural Networks, Support Vector Machines and Naïve Bayes). This

confirmed the benefits of regularization. Despite improvements

with 1000 trees, we chose 200 to speedup our simulations.

4.2.2 Optimistic Baseline Training. Here we assume access to fully

labeled data in the 4 weeks of the Train period. Additionally we

apply a more robust training methodology. We train a RF classifier

with 300 trees and a maximum depth of 20. For each of the 35

models (one per seed) we train 5 random configurations of hyper-

parameters on the first 3 weeks and evaluate on week 4 to select the

best configuration. The final configuration is re-fit on the 4 weeks.

For each model trained above, we also apply supervised feature

selection. Thus, each training proceeds in three stages: i) first we

fit the data with all features, ii) then we select a fraction of the

top importance features, and iii) we retrain with only those top

features. The fraction of features to use is a hyper-parameter to

vary. In addition, we also vary the minimum number of samples in

a leaf node, a binary parameter to use class weights or not, and the

complexity parameter for minimal cost-complexity pruning.

4.2.3 Evaluation metrics. We now discuss the performance metrics

used to measure the quality of a single AL experiment, as well as

to aggregate and summarize an experiment to compare runs.

Learning curves: A single AL experiment, consists of several iter-

ations where the labeled pool grows, and a sequence of models that

can be evaluated on the Test set are trained. Given a performance

metric (e.g., recall at a fixed false positive rate), we obtain a learning

curve where the metric usually improves during the simulation.

Since we run 35 simulations, we obtain a distribution of learning

curves, which we will visualize as percentile band plots in Section 5.

Since we run hundreds of experiments to test different policies,

datasets and time periods, it is not feasible to observe all learning

curves. Therefore we now define three aggregations to summarize

each set of learning curves and be able to interpret the results.

Learning curves rise: To summarise how quickly the learning

curves rise throughout the iterations (see, e.g., Figure 3), we com-

pute the Area Under the percentile 50 learning curve (Area P50),

defined as the curve tracing the median performance (over the 35

seeds) on each iteration. In addition, we normalize it by the area

under the median optimistic baseline, which is the horizontal line

corresponding to the median performance of the optimistic model

(denoted by Norm Area P50). This allows us to compare folds rela-

tive to their optimistic baseline, while correcting for temporal drift

unrelated to AL that also shifts that baseline.

Learning curves variability: To measure the variance of the learn-

ing curves (a good policy will always rise fast for all seeds), we

use the Area between the percentiles 10 and 90 (denoted Var in the

results). This is also normalized by the optimistic baseline area.

Quality of the final AL model: This is defined as the median

performance of the final AL model normalized by the performance

of the optimistic baseline (we denote it as Norm Final P50).

4.3 Policy Sequences and Parameters
We will present experiments with AL policy sequences with 1-stage

(cold), 2-stages (cold + hot) and 3-stages (cold + warm-up + hot). We

use the Random policy for the cold phase, with the following ex-

ceptions: i) a 1-stage sequence where the Outlier Detection policy is

used for comparison, and ii) a baseline policy denotedQueryAll. The
latter corresponds to a scenario of unbounded labeling resources

where all incoming transactions are labeled. In 2-stage policies, we

combine the Random policy with: uncertainty sampling using the

entropy uncertainty (Unc. (entropy)); ODAL; Query By Committee

(QBC); and Expected Model Change (EMC) – see Section 3. In the

3-stage combinations, we use ODAL for warm-up and then, for the

third stage, the same supervised policies as in 2-stage sequences.

For uncertainty sampling in 3-stage sequences, we also include the

two other measures of uncertainty discussed in Section 3 for com-

parison – denoted Unc. (epistemic) and Unc. (percentile), respectively
for the epistemic uncertainty and the fraud percentile criteria.

In the 2-stage policies we switch policies after we have at least

one label from each class. Regarding the 3-stage sequence, the

same criterion is used to switch between warm-up and hot policy,
however, the switch to the warm-up policy from the cold policy is

done after the first batch is collected with the cold policy, to start

exploiting ODAL immediately.

As for the batch size, we set it to 100 for all policies.We performed

some preliminary experiments with larger and smaller batch sizes

and did not see substantial improvements with a smaller batch size.

5 RESULTS
We present results of the AL experiments for the various datasets

focusing first on the most imbalanced. In Table 2, we show a

summary of metrics for the five folds and all policies for Bank 1.

Each row displays the metric values for a specific policy sequence

(1-stage with only a cold policy and 2-stage without warm-up –

see dashed lines). In the columns we have five groups of columns

(one per Fold) with three metrics each (see Section 4.2.3): i) the

normalized area under percentile 50 (Norm Area P50, blue density

scale), ii) the ranking of the policy for the fold (center) according

to Norm Area P50, and iii) the percentile 50 of the final normalized

AL model performance (Norm Final P50, green density scale).

The rightmost pair of columns in Table 2 contains two metrics

that summarize the five folds, namely the average of the ranks

of each fold for each sequence (AVG Rank, orange density scale)

and the average of the normalized area between percentiles 10

and 90 (AVG Var, red density scale). The former provides an overall

measure of how fast the policy performance rises, whereas the latter

6

Active learning for online training in imbalanced data streams under cold start KDD ’21, August 14–18, 2021, Singapore

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Table 2: Bank 1 rankings of AL policies using various folds (see also detailed description in the text).

0 5000 10000 15000 20000 25000
Labeled pool size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 T
ar

ge
t M

et
ri

c

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Random + ODAL + Uncertainty (entropy)

0 5000 10000 15000 20000 25000
Labeled pool size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 T
ar

ge
t M

et
ri

c

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Random

Figure 3: Learning curves distribution for Bank 1 in the best fold (5): The best sequence of policies (left panel green bands),
and the Random policy (right panel green band), normalized by the percentile 50 of the optimistic baseline (gray bands).

of how noisy the policy is, for this dataset. The table rows are sorted

by ascending AVG Rank. Therefore policies that perform better on

various folds are at the top. We choose to rank by Norm Area P50

rather than Norm Final P50 because it is more sensitive to how

quickly the learning curves rise, which is critical in systems that

need a good model to start acting as early as possible. Nevertheless,

the final model performance is important to tells us how close we

get to the optimistic baseline. We include 12 sequences specified

on the left. Random and QueryAll are baselines (Section 4.3).

Bank 1 is the most challenging dataset with an extremely large

class imbalance. Therefore we doubled the daily review budget and

trained in the full two weeks available for AL in the Train period

(see weeks 3 and 4 of each Fold in Figure 2). The best policies in

Table 2 outperform Random by a large margin (close to doubling

the performance in some cases). Furthermore, they are on par with

the QueryAll on folds 1, 4 and 5, both for the Area metric and the

Final performance. In folds 2 and 3, although QueryAll performs

substantially better, the group of top performing AL policies, based

on uncertainty sampling, continue to rank highly.

Observe that, except for the rank, all the metrics have been nor-

malized by the optimistic baseline, which is trained on extra data

(full 4 weeks of the train period vs 2 weeks in Figure 2) with super-

vised feature selection and hyper-parameter tuning. This additional

data would not be available in a realistic production setting and

the improved training is challenging for AL in streaming. This ex-

plains why most metrics are smaller than 1. The exception is Fold 5,
where Norm Final P50 is larger than 1 for various policies. This

can be explained by observing the learning curves for Fold 5 in

Figure 3, where we show the distribution of learning curves for the

best AL policy (left) and the Random policy (right)– represented by

the rising green bands. Three equally spaced percentile bands are

included, together with a solid gray line that traces the median. The

distribution of values for the optimistic baseline is represented in

the horizontal gray bands. All values have been normalized by the

percentile 50 of the optimistic baseline. In this fold we can see that

the distribution of values for the training of the optimistic baseline

is quite wide. Thus, despite being above 1, the final performance of

the AL model for the best policy is still within the central part of the

distribution. Comparing left and right, we confirm that the 3-stages

policy rises quick to high performance with a narrow variance.

It is also important to note that 3-stage sequences, i.e., with ODAL

in the warm-up, tend to outperform simpler setups, especially when

paired with uncertainty based policies.

The overall conclusions, up to data set specific noise and some

temporal drift effects, are confirmed for the other datasets. Note

that AL typically only uses 1/10 to 1/50 of the number of samples

available to the optimistic baselines. For other datasets we only

present the policy rankings in Section 5.1, due to space constraints.

5.1 Aggregation over Datasets
In the previous section we discussed policy rankings and a pat-

tern emerged: 3-stage sequences were the best performing policies,

some 2-stage sequences also showed a good performance, and the

rankings of the least performing policies were unstable across folds.

7

KDD ’21, August 14–18, 2021, Singapore Barata, et al.

Table 3: Overall policy ranking: Average ranks for each
dataset (four central columns) and their overall average
(right column). Rows are sorted by the AVG column.

0

250

0

100

0

20

0.0 0.2 0.4 0.6 0.8 1.0
Fractional labeled pool size

5
0

Bank 1

Bank 2

Payment Processor

Merchant

In
cr

em
en

t i
n

P1
0

/ M
ea

n
(%

)

Figure 4: Boost in the number of positives sampled in 3-stages
vs 2-stages for the entropy based uncertainty policy (see de-
tailed description in the text).

A convenient way of aggregating this information, to provide a

clearer picture of the overall rankings, is to average out the policy

ranks over the studied datasets. This is displayed in Table 3. As

expected, overall, the QueryAll policy ranks first, even though it is

not always the top one for some datasets. The 3-stage policies based

on entropy or epistemic uncertainty rank very close to it, which in-

dicates that these are high quality AL policies. Regarding sequences

with Expected Model Change or the fraud percentile based Uncer-
tainty policy, despite ranking in the middle of the table, for some

datasets they rank very low, so they are not very stable/consistent.

On the other hand, the 2-stage policy with ODAL ranks between 5

and 7 across datasets, which reinforces its value as a stablewarm-up
policy. The Random policy ranks low, as expected. QBC also ranks

low, but this may be due to our specific/simple choice of committee

(a more detailed study is left to future work). Another important

observation is that all 3-stage policies rank higher than their 2-

stages counterpart. In Figure 4 we display a visualization that helps

understanding this improvement for the entropy based uncertainty

policy. On each row we present the average increase of sampled

positives, over all folds, when adding ODAL as a warm-up policy.

For each fold, the increase is the 10th percentile difference between

the positives obtained with a 3-stage sequence and the correspond-

ing 2-stage sequence, divided by the mean positives of the 2-stage

sequence. We can clearly observe that, for datasets with larger im-

balances, including ODAL lifts up this low percentile considerably

in early iterations (e.g., ∼ 3× the mean value for Bank 1). The effect
progressively disappears for milder imbalances – Merchant.

6 CONCLUSIONS
We studied the problem of creating a small labeled dataset, with a

limited budget of annotations by analysts, in a streaming environ-

ment, in a cold start scenario (no previously labeled data and little

or no unlabeled data) for highly imbalanced datasets. We proposed

an AL system adapted to these conditions and performed a detailed

study on four real world credit card fraud detection datasets, cov-

ering three use cases with several orders of magnitude in class

imbalances. We proposed various ingredients that proved essential,

namely: i) ODAL, a computationally efficient version of discrimi-

native active learning to quickly represent well the unlabeled pool

in the labeled pool, relying only on the labeled pool features dis-

tribution, and ii) the combination of ODAL, as a warmup-policy,

with other AL polices, in a 3-stage sequence to alleviate the cold

start problem in highly imbalanced datasets where it may take a

long time until some of the labels are found. We also proposed

two alternative uncertainty measures for the Uncertainty Sampling
policy – epistemic uncertainty and the fraud percentile measure –

as well as an alternative measure of disagreement based on rank

differences for Query By Committee.
In Section 4 we conducted detailed experimental studies, includ-

ing optimistic baselines and 12 different policy sequences to be

ranked. Our analysis showed that the best performing AL policies

are 3-stage sequences with ODAL warm-up and Uncertainty Sam-

pling as Hot policy (either entropy or epistemic). In particular, we

showed that the ODAL warm-up boosts the learning curves in the

earlier AL iterations. As a general rule, the final overall ranking

shows that including ODAL warm-up before any Hot policy boosts

its learning curves, especially for large class imbalance. Further-

more, the best performing sequence is often as good as the QueryAll
policy, it has low variance learning curves, it is competitive with

the optimistic baseline and substantially better than Random. Our

results show that the required amount of labeled examples until

the learning curves stabilizes often ranges between 3 000 to 6 000

for mild to intermediate class imbalances, and a bit over 20 000 for

extreme imbalances (∼ 1/10 to 1/50 of the optimistic baseline data).

To conclude, we comment on some future directions. In this study,

we have simulated the analyst queries by using the real labels in the

datasets. It would be interesting to perform experiments with real

analysts in a live environment to see if the performance gains are

confirmed. Another interesting use case, where label scarcity is a

severe problem, is the detection ofMoney Laundering activities. The

tool andmethods developed for this study have already been applied

to this use case in reference [13] on a Bitcoin dataset with promising

results. It would be interesting to study other Money Laundering

datasets. Finally, we have not touched upon other possible problems

and improvements that could be important in a real system. This

includes the issue of evaluating the AL models online – in our

study we used an independent test set in the future of the train

set for evaluation. Related to this, it would also be interesting to

include online hyper-parameter tuning and model selection, as well

as online supervised feature selection, instead of using a static set

of features selected in an unsupervised way on the first day.

ACKNOWLEDGMENTS
We thank Jacopo Bono for reviewing the manuscript.

8

Active learning for online training in imbalanced data streams under cold start KDD ’21, August 14–18, 2021, Singapore

REFERENCES
[1] Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana S. C. Almeida,

João Tiago Ascensão, and Pedro Bizarro. 2020. Interleaved Sequence RNNs

for Fraud Detection. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery; Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA, 3101–3109.

https://doi.org/10.1145/3394486.3403361

[2] Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, and Gianluca Bontempi.

2018. Streaming active learning strategies for real-life credit card fraud detection:

assessment and visualization. International Journal of Data Science and Analytics
5 (2018), 285–300.

[3] Yu Cheng, Zhengzhang Chen, Lu Liu, Jiang Wang, Ankit Agrawal, and Alok

Choudhary. 2013. Feedback-Driven Multiclass Active Learning for Data Streams.

In Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management (San Francisco, California, USA) (CIKM ’13). Association
for Computing Machinery, New York, NY, USA, 1311–1320. https://doi.org/10.

1145/2505515.2505528

[4] David A. Cohn. 1996. Neural Network Exploration Using Optimal Experiment

Design. Neural Networks 9, 6 (1996), 1071 – 1083. https://doi.org/10.1016/0893-

6080(95)00137-9

[5] Atsushi Fujii, Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka. 1998. Se-

lective Sampling for Example-based Word Sense Disambiguation. Computational
Linguistics 24, 4 (1998), 573–597. https://www.aclweb.org/anthology/J98-4002

[6] Daniel Gissin and Shai Shalev-Shwartz. 2019. Discriminative Active Learning.

CoRR abs/1907.06347 (2019). arXiv:1907.06347 http://arxiv.org/abs/1907.06347

[7] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. 2017. On Calibration

of Modern Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17). JMLR.org,

1321–1330.

[8] Neil Houlsby, Jose Miguel Hernandez-Lobato, and Zoubin Ghahramani. 2014.

Cold-start Active Learning with Robust Ordinal Matrix Factorization. In Pro-
ceedings of the 31st International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR,

Bejing, China, 766–774. http://proceedings.mlr.press/v32/houlsby14.html

[9] Janardan and Shikha Mehta. 2017. Concept drift in Streaming Data Classification:

Algorithms, Platforms and Issues. Procedia Computer Science 122 (2017), 804 –
811. https://doi.org/10.1016/j.procs.2017.11.440 5th International Conference on

Information Technology and Quantitative Management, ITQM 2017.

[10] Janez Kranjc, Jasmina Smailović, Vid Podpečan, Miha Grčar, Martin Žnidaršič,

and Nada Lavrač. 2015. Active learning for sentiment analysis on data streams:

Methodology and workflow implementation in the ClowdFlows platform. Infor-
mation Processing and Management 51, 2 (2015), 187 – 203. https://doi.org/10.

1016/j.ipm.2014.04.001

[11] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training

Text Classifiers. In Proceedings of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (Dublin, Ireland)
(SIGIR ’94). Springer-Verlag, Berlin, Heidelberg, 3–12.

[12] F. T. Liu, K. M. Ting, and Z. Zhou. 2008. Isolation Forest. In 2008 Eighth IEEE
International Conference on Data Mining. 413–422.

[13] Joana Lorenz, Maria Inês Silva, David Aparício, João Tiago Ascensão, and Pedro

Bizarro. 2020. Machine learning methods to detect money laundering in the

Bitcoin blockchain in the presence of label scarcity. arXiv:2005.14635 [cs.LG]

[14] Paulo Marques, Miguel Araújo, Bruno Laraña, Nuno Diegues, Pedro Silva, and

Pedro Bizarro. 2019. Semantic-aware feature engineering, US20200090003A1

Patent (Pending).

[15] H. Nguyen, J. B. Gomes, M. Wu, H. Cao, J. Cao, and S. Krishnaswamy. 2015.

Active learning for accurate analysis of streaming partial discharge data. In

2015 IEEE Conference on Prognostics and Health Management (PHM). 1–5. https:

//doi.org/10.1109/ICPHM.2015.7245026

[16] Hieu T. Nguyen and Arnold Smeulders. 2004. Active Learning Using Pre-

Clustering. In Proceedings of the Twenty-First International Conference on Machine
Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing Ma-

chinery, New York, NY, USA, 79. https://doi.org/10.1145/1015330.1015349

[17] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting Good Probabilities

with Supervised Learning. In Proceedings of the 22nd International Conference on
Machine Learning (Bonn, Germany) (ICML ’05). Association for Computing Ma-

chinery, New York, NY, USA, 625–632. https://doi.org/10.1145/1102351.1102430

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[19] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. 2015. Calibrating

Probability with Undersampling for Unbalanced Classification. In 2015 IEEE
Symposium Series on Computational Intelligence. 159–166.

[20] Nicholas Roy and Andrew McCallum. 2001. Toward Optimal Active Learning

through Sampling Estimation of Error Reduction. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 441–448.

[21] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Tech-

nical Report 1648. University of Wisconsin–Madison. http://axon.cs.byu.edu/

~martinez/classes/778/Papers/settles.activelearning.pdf

[22] Burr Settles, Mark Craven, and Soumya Ray. 2008. Multiple-Instance Active

Learning. In Advances in Neural Information Processing Systems 20, J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis (Eds.). Curran Associates, Inc., 1289–1296.

http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf

[23] H. S. Seung,M. Opper, andH. Sompolinsky. 1992. Query by Committee. In Proceed-
ings of the Fifth Annual Workshop on Computational Learning Theory (Pittsburgh,

Pennsylvania, USA) (COLT ’92). Association for Computing Machinery, New

York, NY, USA, 287–294. https://doi.org/10.1145/130385.130417

[24] Mohammad Hossein Shaker and Eyke Hüllermeier. 2020. Aleatoric and Epistemic

Uncertainty with Random Forests. In Advances in Intelligent Data Analysis XVIII,
Michael R. Berthold, Ad Feelders, and Georg Krempl (Eds.). Springer International

Publishing, Cham, 444–456.

[25] J. Shan, H. Zhang, W. Liu, and Q. Liu. 2019. Online Active Learning Ensemble

Framework for Drifted Data Streams. IEEE Transactions on Neural Networks and
Learning Systems 30, 2 (2019), 486–498. https://doi.org/10.1109/TNNLS.2018.

2844332

[26] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.

Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.
[27] Zuobing Xu, Ram Akella, and Yi Zhang. 2007. Incorporating Diversity and

Density in Active Learning for Relevance Feedback. In Advances in Information
Retrieval, Giambattista Amati, Claudio Carpineto, and Giovanni Romano (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 246–257.

[28] Yazhou Yang and Marco Loog. 2018. A benchmark and comparison of active

learning for logistic regression. Pattern Recognition 83 (2018), 401 – 415. https:

//doi.org/10.1016/j.patcog.2018.06.004

[29] Zhilin Yang, Jie Tang, and Yutao Zhang. 2014. Active Learning for Streaming

Networked Data. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management (Shanghai, China) (CIKM
’14). Association for Computing Machinery, New York, NY, USA, 1129–1138.

https://doi.org/10.1145/2661829.2661981

[30] Y. Zhang, P. Zhao, S. Niu, Q. Wu, J. Cao, J. Huang, and M. Tan. 2019. Online

Adaptive Asymmetric Active Learning with Limited Budgets. IEEE Transactions
on Knowledge and Data Engineering (2019), 1–1.

[31] X. Zhu, P. Zhang, X. Lin, and Y. Shi. 2010. Active Learning From Stream Data

Using Optimal Weight Classifier Ensemble. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 40, 6 (2010), 1607–1621. https://doi.org/10.

1109/TSMCB.2010.2042445

[32] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. 2011. Active

Learning with Evolving Streaming Data. In Machine Learning and Knowledge
Discovery in Databases, Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba,

and Michalis Vazirgiannis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

597–612.

9

https://doi.org/10.1145/3394486.3403361
https://doi.org/10.1145/2505515.2505528
https://doi.org/10.1145/2505515.2505528
https://doi.org/10.1016/0893-6080(95)00137-9
https://doi.org/10.1016/0893-6080(95)00137-9
https://www.aclweb.org/anthology/J98-4002
https://arxiv.org/abs/1907.06347
http://arxiv.org/abs/1907.06347
http://proceedings.mlr.press/v32/houlsby14.html
https://doi.org/10.1016/j.procs.2017.11.440
https://doi.org/10.1016/j.ipm.2014.04.001
https://doi.org/10.1016/j.ipm.2014.04.001
https://arxiv.org/abs/2005.14635
https://doi.org/10.1109/ICPHM.2015.7245026
https://doi.org/10.1109/ICPHM.2015.7245026
https://doi.org/10.1145/1015330.1015349
https://doi.org/10.1145/1102351.1102430
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf
https://doi.org/10.1145/130385.130417
https://doi.org/10.1109/TNNLS.2018.2844332
https://doi.org/10.1109/TNNLS.2018.2844332
https://doi.org/10.1016/j.patcog.2018.06.004
https://doi.org/10.1016/j.patcog.2018.06.004
https://doi.org/10.1145/2661829.2661981
https://doi.org/10.1109/TSMCB.2010.2042445
https://doi.org/10.1109/TSMCB.2010.2042445

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Querying
	2.2 AL Policies

	3 Methods
	3.1 Startup and preprocessing
	3.2 Policies

	4 Experiments
	4.1 Data preparation
	4.2 Experimental Setup
	4.3 Policy Sequences and Parameters

	5 Results
	5.1 Aggregation over Datasets

	6 Conclusions
	Acknowledgments
	References

