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Abstract

Machine Learning (ML) has been increasingly used to aid humans to make bet-
ter and faster decisions. However, non-technical humans-in-the-loop struggle to
comprehend the rationale behind model predictions, hindering trust in algorithmic
decision-making systems. Considerable research work on AI explainability at-
tempts to win back trust in AI systems by developing explanation methods but there
is still no major breakthrough. At the same time, popular explanation methods (e.g.,
LIME, and SHAP) produce explanations that are very hard to understand for non-
data scientist persona. To address this, we present JOEL, a neural network-based
framework to jointly learn a decision-making task and associated explanations that
convey domain knowledge. JOEL is tailored to human-in-the-loop domain experts
that lack deep technical ML knowledge, providing high-level insights about the
model’s predictions that very much resemble the experts’ own reasoning. More-
over, we collect the domain feedback from a pool of certified experts and use it
to ameliorate the model (human teaching), hence promoting seamless and better
suited explanations. Lastly, we resort to semantic mappings between legacy expert
systems and domain taxonomies to automatically annotate a bootstrap training
set, overcoming the absence of concept-based human annotations. We validate
JOEL empirically on a real-world fraud detection dataset. We show that JOEL can
generalize the explanations from the bootstrap dataset. Furthermore, obtained re-
sults indicate that human teaching can further improve the explanations prediction
quality by approximately 13.57%.

1 Introduction

Notwithstanding the benefits of Machine Learning (ML) commoditization in many areas, several
state-of-the-art ML methods convey recondite information about their predictions. The inability to
comprehend these outcomes hinders trust in these systems.

Research on Explainable Artificial Intelligence (XAI) focuses on improving the interpretability
(or transparency) of these systems. Whilst the XAI literature is booming with explainer methods
[1, 2, 3, 4, 5], the large majority focus on the data scientist persona, creating low-level explanations
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that are too difficult to grasp to other non-technical personas [6, 7, 8]. This gap is witnessed in the
recent impetus of feature-attribution-based explainers [1, 2, 3]. These build explanations as lists of
input features and associated feature scores1. However, these can be too specific and too technical.
For this reason, explainer methods alike fail to address the information needs of domain experts,
which are deeply involved in many human-AI cooperative systems [6, 8].

Instead, it is necessary to create explanations capable of conveying domain knowledge. This should
reflect the semantic concepts related to the task of the human-in-the-loop, encoding information about
the domain experts underlying reasoning upon decision-making. Although recent lines of research
have begun exploring “concept-based explanations” [7, 6, 8, 9] these do not apply to high stakes
decision-making tasks.

In this work, we aim to strengthen human-AI decision-making systems by: (1) proposing a novel
XAI framework, JOEL, a self-explainable neural network that jointly learns semantic concepts and a
decision associated with a predictive task [8, 10], and (2) exploiting the human-in-the-loop feedback
about the decision task and explanations quality to continuously produce better suited explanations.
Figure 1 illustrates the proposed framework in a real world fraud detection setting.

Figure 1: Example of JOEL’s online loop of generating concept-based explanations and collecting
human feedback in a fraud detection settings.

The joint learning of the decision task and associated explanations leads to more robust and authentic2

explanations. We encode the ML interpretability in an neural network (NN) model, hence allowing
us to incorporate domain knowledge and to associate semantic concepts to the decision-making task
[7, 6, 8, 9]. These high-level concepts may encode external information that while not present in the
data itself may be very useful.

The human-AI proximity facilitates the creation of virtuous cycles where the model learns, through
human (expert’s) feedback, how to improve its explanations in a way that benefits the human at
decision-making: the model learns the teacher’s reasoning and with time it can foster faster and more
effective decisions from the teacher.

Finally, we use a Distant Supervision approach to circumvent the low availability of human concept-
labeled datasets3 when there are legacy expert systems in place (e.g., rule-based systems). This
approach automates the labeling process based on semantic mappings between the existing legacy
system and domain knowledge taxonomies.

The summary of our contributions are as follows:

1. We present a novel self-explainable neural network framework to mutually learn a decision
task and an explainability task, consisting of associated high-level domain concepts that
serve as explanations to the human-in-the-loop (section 2.1);

1The feature’s contribution to a given ML prediction
2In this context, we refer to authenticity as being a true reason for a given ML outcome.
3Manually creating these datasets carries abnormal costs and time efforts.[8]
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2. We exploit the human-in-the-loop’s expertise to continuously tune the model on both tasks
(section 2.2);

3. We propose and empirically validate the use of a semi-supervised approach for bootstrap-
ping the proposed self-explainable neural network model when manually concept-based
annotated datasets are unavailable (section 2.3).

4. We show on a real-world fraud dataset that JOEL is able to jointly learn the semantic
concepts and the fraud decision task. We observe an increase of the model’s explainability
performance of approximately 13.57% after the incorporation of expert’s feedback into the
model (section 4).

2 Methodology

In this section, we describe our framework for jointly learning a decision task and associated domain
knowledge explanations. We assume the semantic concepts (used as explanations) will help the
domain experts (end-users) reasoning throughout their decision-making process. Conversely, the
framework benefits from the domain experts’ feedback about which concepts justify their decisions.
Hence, it can continuously improve both its predictive accuracy and explainability. We coin this
framework Jointly learned cOncept-based ExpLanations (JOEL).

2.1 Architecture

We frame the problem of associating both semantic concepts and decision labels as one of finding an
hypothesis (learner), h ∈ H, such that, for the same inputs, x ∈ X , h is able to simultaneously satisfy
h : X → S and h : X → Y , where S is the set of semantic concepts and Y is the set of decisions (or
classes) of the predictive task.

Conceptually, JOEL comprises three building blocks: (1) an NN, (2) a semantic layer, and (3) a
decision layer. NN’s versatility facilitates the arrangement of these components in multiple ways.
This work, however, delves into a hierarchical version (see figure 2): whose blocks are chained
sequentially, i.e., the outputs of the NN are fed as inputs to the semantic layer and its outputs are fed
into the decision layer. JOEL outputs both decision predictions (last layer) and concept predictions.

Figure 2: JOEL hierarchical architecture. The semantic layer (orange) produces the concepts, Cs
(yellow), which are the inputs for the decision layer (blue). The concepts (explanations of the
predictive task) are also outputs of the network. Colors indicate layer type: input vector (green);
hidden layer (grey); semantic layer (orange); decision layer (blue); output layers (white).

Vanilla NNs seek to model single-label tasks, such as fraud detection, or medical diagnosis. JOEL’s
hierarchical architecture can be seen as a multi-task materialization where the outputs of the (L+1)th

layer are used both for a multi-label task (predict multiple semantic concepts) and a single-label task.
By chaining the semantic and decision layers, we are able to encode external information about the
domain which is not available in the feature data. This is particularly meaningful when the taxonomy
of semantic concepts is intimately related to the decision task (e.g., a fraud taxonomy of fraudulent
patterns is deeply correlated with the fraud detection task). Therefore, learning to accurately predict
domain concepts is likely to also lead to better predictions and end-user decisions when it comes to
the end-task.

3



Similarly to other NN architectures, our method learns through backward propagation of errors
(backprop)[11] and some variant of the gradient descent method. Unlike other NNs models, the joint
learning approach in JOEL’s method attempts to minimize both a decision loss, LD, and a semantic
loss, LS . Mathematically, given model’s parameters, Θ = [θ1, θ2, ..., θL, θS , θD], the outputs of the
decision layer, δD(x,Θ), and the outputs of semantic layer, δS(x,Θ), the gradient with respect to the
loss, L, at the semantic layer is given by equation 1.

∇δS L(x, y, s) = ∇δS LD(δD(x,Θ), y) +∇δS LS(δS(x,Θ), s) (1)

where:

∇δS LD(δD(x,Θ), y) =
∂δD(x,Θ)

∂δS
.∇δD LD(δD(x,Θ), y)) (2)

The decision of which loss functions to use within each task depends on the nature of the task. Since
the semantic layer corresponds to a multi-labeling task, we use a sigmoid function for each individual
entry of the output, before using it in the loss function. To find the mapping that simultaneously
satisfies h : X → Y and h : X → S for a given input vector, x ∈ X , we mutually minimize the
(categorical) cross-entropy for both predictive tasks. For an input vector, x ∈ X , a set of domain
concepts, s ∈ S, and decision labels, y ∈ Y , we have that:

LD(x, y) = −
| Y |∑
i=1

yi log [softmax(δD(x,Θ)i)] (3)

LS(x, s) = −
|S|∑
i=1

si log [sigmoid(δS(x,Θ)i)] (4)

The real “intepretability” of concept-based explanations is debatable [8], mirroring the incertitude
within the XAI field. From a fundamental standpoint, using semantic concepts to explain decisions
does not necessarily signify the NN leverages their meaning in its predictive task. However, by design,
we do expect the concepts to be intimately interrelated with the decision task. In this view, JOEL’s
explanations may actually bestow promising guidance to a skillful persona with no ML technical
knowledge, thereby improving its efficiency and efficacy.

2.2 Human Teaching

Human teaching closes the human-AI feedback loop in algorithmic decision-making systems. It is
often the case that interactions within these systems are uni-directional: a human (typically, a domain
expert) interacts with an ML system to make a decision. However, while the ML system directly
influences human decisions, the reverse is not verified, as most systems do not promptly adapt to
human behavior. Instead, most systems are offline and it is only after a certain period of time that a
new model is trained and adapted to the collected knowledge.

JOEL tackles these limitations and tailors the explanations’ quality to be on par with the domain
expert’s need. Since the explanations are meant to help the domain experts to better perform their
task, these should also resemble the experts’ own reasoning. As a result, the integration of expert
feedback into the model’s learning process becomes vital to ensure that the explanations remain
interpretable and that keep fostering more efficient and effective decisions.

Figure 1 shows this mechanism in an illustrative example of a fraud detection task, where the main
goal is to classify financial transactions as being fraudulent or not. After receiving a transaction, JOEL
infers predictive scores for both the fraud decision and the fraud patterns (semantic concepts). Using
this information (explanation), a fraud analyst (domain expert) reviews the transaction and indicates
which fraud patterns she based her decision. Lastly, JOEL’s learnable parameters get updated based
on the expert’s feedback.

In many real-world settings, human expertise aims to disambiguate inputs for which the model is very
uncertain. In these cases, JOEL can exploit this short-term feedback to improve human-AI system
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performance. Our method’s hierarchical structure is likely to encode extra information based on this
feedback. Therefore, rapidly improving both its predictive accuracy and the explanations quality.

After bootstrapping JOEL using an initial concept-based annotated dataset, JOEL enters a human
teaching stage, interacting with humans-in-the-loop: providing explanations and collecting human
feedback about the generated explanations. Every b feedback instances, JOEL uses them to adjust its
parameters through backprop. To prevent eventual model deterioration (e.g.lower human aptitude for
the task), we incorporate a quality control precondition for running this stage: to adhere to the pool
of human teachers in the human-teaching stage, each human must meet a minimum accuracy-level
(or other relevant qualitative measure).

2.3 Distant Supervision

Training neural networks requires large amounts of data in order to attain reasonably good perfor-
mance [12]. Multi-label methods further exacerbate this data necessity. On top of that, difficulties
associated with the collection and creation of concept-annotated datasets make NN explainers based
on semantic concepts infeasible in many practical settings.

JOEL demands large datasets to be able to generalize well. When there is no data available (or
the data is insufficient) and information based on legacy expert systems is available, we propose
to bootstrap the model using a semi-supervised learning approach known as Distant Supervision
[13, 14, 15]. Often times, these expert systems enclose semantic knowledge that can be associated
with the concepts from the domain taxonomy. Therefore making it possible to automatically derive
concepts for each datapoint without the need for human labels. While it still requires human effort to
create the legacy systems-taxonomy mappings, the effort is negligible when compared with the effort
of manually annotating a large dataset.

As an example consider the fraud prevention domain involving a rule legacy system. Using the
similarities between the domain knowledge conveyed in the rules, we create a rule-concept mapping
to automatically associate rules to concepts in a fraud taxonomy. Table 1 shows examples of such
mappings. After proper validation of the mapping by a fraud expert, we use it to automatically
label payment transactions in bulk. Specifically, consider a payment transaction X for which the
legacy system triggered the two rules in the table. The first rule maps to the “Suspicious Items”
and the second rule maps to “Suspicious Customer” and “Suspicious Payment”. Thus, the Distant
Supervision technique automatically annotates transaction X with “Suspicious Items”, “Suspicious
Customer”, and “Suspicious Payment”.

Table 1: Example of two rule-concept mappings in a fraud detection setting.
Rule Description Mapped Concepts

Order contains risky product styles. Suspicious Items
User tried n different cards last week. Suspicious Customer, Suspicious Payment

Although semi-supervised techniques improve scalability, one still requires a human-labeled dataset
to empirically validate the results. As we will see in the ensuing section, we conduct an empirical
validation of the proposed method using Distant Supervision to automatically label a dataset with 9.3
million instances, followed by a validation in a smaller human-labeled dataset with 1561 transactions.

3 Experimental Setup

We validate our explanation method empirically in a real Human-AI fraud prevention system. This
system comprises a rule legacy system, a deployed ML model, and a pool of fraud analysts. In this
context, when a payment transaction first arrives, it undergoes a rule system, possibly triggering pre-
defined business rules (e.g., payment amount is anomalous or the IP of an online payment transaction
is blacklisted). Subsequently, an ML model assigns the transaction a risk score. The prevention
system immediately issues a decision for the most extreme scores (accept low-risk and reject riskier
ones). Accordingly, transactions whose score is within a business-defined review band require human
intervention. In that case, fraud analysts inspect the transaction data, fraud risk, and the explanations,
to decide whether to accept or reject the transaction.

5



We evaluate JOEL in a two-step approach. We first run a grid search over a “noisy dataset“ to
determine the best architectural and learning decisions (e.g., number of hidden layers, number of
neurons at each layer). In total, we train 71 models. Then, we fix the decisions for the best model
and we run another grid search over the “ground truth dataset“ (based on human labels) to determine
the best configuration possible for a human teaching setup and whether the models benefit human
teaching. Finally, throughout these experiments, we examine the different trade-offs emerging from
jointly learning two distinctive tasks: fraud detection (single-label task) and creation of explanations
based on fraud patterns (multi-label task). We coin the first stage Distant Supervision and the second
Human Teaching.

Dataset: We use a privately held online retailer fraud detection dataset, comprising approximately
9.3 millions of payment transactions of which only 2% represent fraudulent behaviors. For our
experiment, we divide it into four sequential subsets: train, validation, test, and production. These
represent 47%, 16%, 9%, 28% of the dataset and exhibit 2.5%, 1.7%, 1.5%, 1.5% of fraud rate
(prevalence), respectively. While training JOEL, we use the validation set to apply early stopping and
set the outputs’ thresholds. Then, we perform model selection in the test set, after which only the best
model is evaluated in a production set. The production and test sets are apart by two months, thus
mimicking practical settings where a large time gap exists between model selection and deployment.

Domain Knowledge taxonomy: With the help of skilful fraud analysts, we created a fraud taxonomy
of suspicious patterns to guarantee that the provided explanations closely resemble their reasoning
process throughout transactions reviewing. Rather than creating prosaic explanations, the taxonomy
consists of keywords that correspond to certain financial transaction patterns such as “malformed
addresses” or “malformed name“. Furthermore, the taxonomy is hierarchic, grouping patterns alike
into more general concepts, for instance, by grouping the previous two patterns into the single broader
concept “suspicious billing shipping”. Semantically, these concepts refer to patterns involving specific
information about the transaction and aim at pinpointing the most relevant information (e.g., evidence
of wary behaviors) that the analysts look for when reviewing. As an example consider the concept
“suspicious billing shipping” which aims to guide analysts’ attention to the information related with
shipping or/and billing information and look for dubious aspects (e.g.mismatch between addresses,
and malformed address).

Distant Supervision Dataset (or machine-labeled dataset): In the absence of a human-labeled
dataset, we use the Distant Supervision approach to automatically annotate the initial single-label
dataset (exclusively annotated with fraud labels). We extract the already existing information of
a legacy rule system (that encodes high-level domain information) and map it into the fraudulent
patterns in the taxonomy. We had domain specialists supervised this mappings, which totals 300
associations.The result is a multi-label dataset: where each row is jointly associated with the fraud
label (decision task) and fraud patterns (semantic concepts). Henceforth, given that these annotations
are proxies of the true associated concepts, we dub them “noisy labels”. We observe a poor rule
coverage of non-fraudulent patterns (e.g.“Nothing Suspicious”, “Good Customer History”, “All
Details Match”), which emphasizes the limitation of this approach on both the available rules.

Human Labeled Dataset: A robust validation of our method should not depend exclusively on
machine-labeled datasets (“noisy datasets”), for they are not guaranteed to reflect the real data. Thus,
we ran a human-labeling campaign involving three in-house fraud experts, where we mimic their
original reviewing process. After each transaction review, the system prompts the analysts about the
fraud patterns (or legitimate patterns) perceived during the transaction appraisal. Analysts select the
concepts from the pool of concepts determined in the fraud taxonomy, and also the fraud decision.
This human effort yielded 1561 manually labeled transactions. Henceforth, we dub these labels as
“ground truth” labels.

Evaluation Metrics: JOEL comprises two distinct tasks: a single-label task focused on discerning
fraudulent from non-fraudulent transactions, and a multi-label task focused on producing a complete
and informative explanation for the former. Complying with the existing business constraints, which
aim to reduce the probability of negatively affecting legitimate users, we set out to evaluate the first
task in terms of Recall at 3% False Positive Rate (FPR). The evaluation results (after training and
validation) require an aggregate measure of JOEL’s generalization at the multi-label task in holdout
datasets. We use the mean Area Under the Curve (AUC) over all predicted concepts because AUC
gives a general idea about the overall performance for a single label.
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Baseline: We compare our hierarchical structure with the vanilla multi-label NN. In this baseline,
instead of considering a hierarchical structure, we set both the decision and the semantic layer at the
same level.

Hyperparameter Optimization best model criterion: From all the evaluated hyperparameter con-
figurations (both for baseline and hierarchical structure), we select the one with highest performance
at the fraud detection task. This decision guarantees business constraints are met regardless of the
explanations. In case of ties, we discern the best model based on the performance at the second task -
explanations accuracy, measured on the Distant Supervision dataset.

Human Teaching: The second experiment uses the human-teaching stage, the human-labeled dataset,
and the best architectural decisions as determined in the first model selection stage. We carry out
a small experiment to obtain proxy measures of the fraud analysts’ accuracy (prior to being shown
explanations). All three analysts satisfied the minimum accuracy level of 0.5 set for this experiment
(with 0.636, 0.612, and 0.597 accuracy levels), and were, therefore, integrated in the teachers pool of
the human-teaching stage. Afterwards, we split the human-labeled dataset into training, validation,
and test sets. The first 800 transactions are used for training and the ensuing 200 for early stopping,
threshold calibration, and model selection. Then, we re-train the best performing model using both
the training and validation sets. We measure its generalization performance in an holdout test set
composed of 561 transactions.

4 Results and Discussion

Figure 3 shows the obtained trade-offs between decision task (fraud detection) and explainability task
(predicting associated fraud concepts) for both JOEL and the baseline. In total, we trained 71 distinct
models for each architecture. In terms of the decision task, JOEL-derived architectures seem to
exhibit a propensity for achieving high results in the predictive task, while also achieving competitive
mean AUC values for the explainability task. Conversely, although baseline models exhibit in some
cases higher performance in the explainability task they fall short at the fraud prediction task. In fact,
only one baseline model ranks in the the top 15 best performing models on the decision task (ranks
12th with 19.95% of fraud Recall at 3% FPR).

Figure 3: Trade-off between the decision task (fraud detection) and explainability task (concepts
prediction) discriminated by architecture type.

Thus, given the business constraints, we select the best model in terms of fraud recall at 3% FPR,
achieving 22.81% Recall on the test set. The selected JOEL model has a total of 5 hidden layers
(with 128, 128, 64, 64, and 32 neurons), a semantic layer (with 32 neurons), and a decision layer
(with 14 neurons). At each hidden layer, we use the ReLU activation function [16], followed by a
dropout mechanism [17] (with rates of 40%, 40%, 30%, 30%, 20%). We also apply a dropout rate
of 20% to the semantic layer). Finally, we use the out-of-the box Adam optimizer [18] and set the
learning rate to 0.0001.
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Distant Supervision results: We use Distant Supervision to bootstrap our models with “noisy
labels”. As a result, the quality of the model’s predictions is directly correlated with the rule-concepts
mapping: if a concept does not have a matching rule, then the model will suffer from the cold-start
problem4. Even if there exist rules that map to each concept, if they exhibit small prevalence in the
dataset, then it is likely that the model struggles to learn them. This concepts’ misrepresentation
reflected on the obtained results. Table 2 shows the results of the best JOEL model (with 0.8446 mean
AUC) on the hold-out Distant Supervision production dataset discriminated by semantic concept.
Although the model attains AUC’s above 0.80 for most concepts, for two of them the performance is
worse than 0.65. We hypothesize this to be related with the concept’s misrepresentation. In particular,
we emphasize that the rule system is tailored for anomalous behavior detection, with only a small
fraction of the rules mapping to legitimate behaviors. Therefore, with the exception of the “Suspicious
Delivery” concept, the model exhibits fairly high AUC values for fraud concepts. Since only 5 rules
map to “Suspicious Delivery”, all of which underrepresented, the model is not able to generalize it.

Table 2: Model performance on production dataset, trained with Distant Supervision.
Concept AUC

Suspicious Items 0.8499
Suspicious IP 0.9190
Suspicious billing shipping 0.8921
Suspicious Delivery 0.6467
Suspicious Email 0.9376
Suspicious Payment 0.9156

Concept AUC

Suspicious Device 0.8862
High speed ordering 0.9468
Suspicious Customer 0.9401
All details match 0.6470
Nothing suspicious 0.7169
Good customer history 0.8370

Human teaching results: In the second stage of our experiment, we start with the evaluation of the
best model in the previous stage on a human labeled test set, containing 561 instances. This evaluation
comprises no hyperparameter or structural tweaks. We then compare this approach with one where
the model tweaks its hyperparameters based on the human teachers’ feedback. For this teaching stage,
we increase the model’s learning rate from 0.0001 to 0.05, hence causing the model’s weights to be
updated more aggressively. Table 3) shows the obtained AUC results for the former untweaked model
(“no human teaching”) and also for the model after the human teaching stage (“human teaching”). We
observe a small improvement of approximately 0.04 for the “Suspicious Delivery” and “All details
match” concepts, for which the Distant Supervision approach had an initially worse performance.
Interestingly, it is also possible to observe a detriment in the predictive performance of the concept
“High speed ordering”, “Suspicious Customer”, “Nothing Suspicious”, and “Good customer history”.
One possible cause of this result may be incongruent mental representations between human experts.
A possible way to mitigate it, would be to implement an agreement-based filtering technique that
would be responsible for filtering out the human feedback based on the agreement of multiple
teachers.

Overall, we can observe that (1) the pre-trained model with Distant Supervision approach is able
to generalize the explanations, and (2) the human feedback enhances, on average, the model’s
explanation quality, improving the predictive performance of concepts it initially struggled to predict.

5 Related Work

The use of human-friendly semantic concepts is becoming more popular, specifically, in the computer
vision domain. For instance, Kim et al.[7] proposed Testing with Concept Activation Vectors (TCAV),
a concept-based explainer that weighs the importance of a user-defined concept to a classification
result (e.g., how sensitive the prediction of “bird” is to the presence of concepts like “feathers” or
“beak”). Recently, this method has also been applied to the natural language domain, for example,
to measure how neural network activation units react to different human values-laden terms such as
“respective”, “abusive”, “straight” among others [19]. Also in the computer vision domain, Ghorbani
et al.[6] propose Automated Concept-Based Explanation (ACE), that extracts concepts directly from
the input data without any external source. It first obtains different embeddings for different image
segments and then applies a clustering algorithm in the embeddings space to identify the concepts.

4Other semi-supervised techniques discussed in section 5 can be used to overcome the cold-start problem.

8



Table 3: Performance of the best bootstrapped model on human-labeled test set with and without
human teaching.

Concept No Human Teaching (AUC) Human Teaching (AUC)

Suspicious Items 0.2911 0.7119
Suspicious IP 0.4760 0.7215
Suspicious billing shipping 0.5943 0.7531
Suspicious Delivery 0.5962 0.6368
Suspicious Email 0.6231 0.7222
Suspicious Payment 0.6971 0.7170
Suspicious Device 0.7348 0.7799
High speed ordering 0.7365 0.6874
Suspicious Customer 0.4621 0.3640
All details match 0.3496 0.3976
Nothing suspicious 0.4151 0.3425
Good customer history 0.4250 0.3266

Mean 0.5393 0.6125

In another perspective, Melis and Jaakkola [8] include the interpretability straight into the ML model
architecture (dubbed self-explainer concept-based model). They use autoencoders to generate the
basis concepts and their relevance scores from low-level input features, which then serve as input to
the predictive task. In another vein, DoctorXAI [9] leverages domain knowledge to produce more
comprehensive explanations in medical diagnosis tasks. This domain information is used to guide the
explanation generation process of a low-level explainer, LIME [1].

All in all, most concept-based methods in the literature are specific to computer vision. Indeed,
there is currently no research work in what it comes to high-level concept-based explanations for
decision-making tasks. While DoctorXAI [9] uses concepts to create explanations for a decision-
making setting, the explanation itself does not convey any domain knowledge about the decision
but rather about the feature space. Hence, it fails to address information needs of non-data scientist
humans-in-the-loop.

A crucial aspect in interpretable concept learning concerns the data quality, since many of the previous
methods demand for largely annotated datasets. Unfortunately, obtaining enough human annotations
can be difficult in practice due to the time and efforts required. In this regard, semi-supervised learning
approaches constitute a promising bypass to the label shortage [13, 14, 20, 21, 22]. Most of these
approaches foster the programmatic labeling of datasets. One such example is the Distant supervision
technique [13, 14], which leverages existing knowledge bases (e.g., rule systems) and, through the
heuristically creation of semantic mappings between the knowledge bases and the concepts, facilitates
the automatic (weak) annotation of the dataset. Another emerging technique in the natural language
domain is the joint use of written explanations and labeling functions to train a generative labelling
model [21, 22]. In this context, a small subset is annotated with natural language explanations and
decision labels. These, along with the instances, are then used to hot-start and parametrize the labeling
functions that will be responsible for generating the labels. In our experiments, we use the distant
supervision approach to exploit the already available vestiges of a legacy rule-based system in the
data. We leave the exploration of other approaches for future work.

6 Conclusion and Future Work

In this work, we propose JOEL, an NN-based framework for jointly learning a decision task and
associated domain knowledge explanations. Simultaneously, our framework exploits the decision-
makers feedback regarding not only their decision but also the concepts that justify their decision.
Initial experiments show that using human teaching can lead to significant gains in predictive
accuracy and explainability. Moreover, we show that JOEL is able to overcome the cold-start problem
and generalize from a machine-labeled dataset when using a Distant Supervision technique. Future
directions include validating JOEL in other settings (e.g., in the healthcare domain), robustly assessing
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the framework’s true impact and utility for the users, exploring distinct NN variants (e.g., architectures,
loss functions), and exploring incremental learning to continuously adapt to new knowledge.
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