
ARMS: Automated rules management system for fraud detection
David Aparício

david.aparicio@feedzai.com

Feedzai

Ricardo Barata

ricardo.barata@feedzai.com

Feedzai

João Bravo

joao.bravo@feedzai.com

Feedzai

João Tiago Ascensão

joao.ascensao@feedzai.com

Feedzai

Pedro Bizarro

pedro.bizarro@feedzai.com

Feedzai

ABSTRACT
Fraud detection is essential in financial services, with the poten-

tial of greatly reducing criminal activities and saving considerable

resources for businesses and customers. We address online fraud

detection, which consists of classifying incoming transactions as

either legitimate or fraudulent in real-time. Modern fraud detection

systems consist of a machine learning model and rules defined by

human experts. Often, the rules performance degrades over time

due to concept drift, especially of adversarial nature. Furthermore,

they can be costly to maintain, either because they are computation-

ally expensive or because they send transactions for manual review.

We propose ARMS, an automated rules management system that

evaluates the contribution of individual rules and optimizes the

set of active rules using heuristic search and a user-defined loss-

function. It complies with critical domain-specific requirements,

such as handling different actions (e.g., accept, alert, and decline),

priorities, blacklists, and large datasets (i.e., hundreds of rules and

millions of transactions). We use ARMS to optimize the rule-based

systems of two real-world clients. Results show that it can maintain

the original systems’ performance (e.g., recall, or false-positive rate)

using only a fraction of the original rules (≈ 50% in one case, and

≈ 20% in the other).

CCS CONCEPTS
• Theory of computation → Optimization with randomized
search heuristics; • Software and its engineering → Genetic
programming; • Applied computing→ Online banking; Online
shopping; Secure online transactions;

KEYWORDS
fraud detection; genetic programming; evolutionary algorithms;

greedy algorithms; randomized search

ACM Reference Format:
David Aparício, Ricardo Barata, João Bravo, João Tiago Ascensão, and Pe-

dro Bizarro. 2020. ARMS: Automated rules management system for fraud

detection. In Proceedings of KDD ’20 (submitted). ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

KDD ’20 (submitted), August 22–27, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Financial institutions, merchants, customers, and government agen-

cies alike suffer fraud-related losses daily, including credit card

theft and other scams. Financial fraud consists of someone inappro-

priately obtaining the details of a payment card (e.g., a credit/debit

card) and using it to make unauthorized transactions. Frequently,

the cardholder detects such illicit usage and initiates a dispute with

the bank to be reimbursed (a chargeback), at the expense of the mer-

chant or bank that accepted the transaction. An over-conservative

decision-maker might block all suspicious activity. However, this is

far from optimal, as fraud patterns are not trivial, and it prevents

legitimate economic activity. Therefore, it is essential to adjust

automated fraud detection systems to the risk profile of the client.

Modern automated fraud detection systems consist of a machine

learning (ML) model followed by a rule-based system. The model

scores the transaction. The rule-based system uses the score and

triggers of manually defined rules to decide an action (i.e., accept,

alert, or decline the transaction). Rule-based systems with many

rules are complex, hard tomaintain, and frequently computationally

expensive. An ideal system has only a minimum set of rules that

ensure performance while preserving requirements and alerts low.

Our main contributions are the following:

(1) Identifying a new problem: how to properly evaluate a complex

rules system (taking into account overlapping rule triggers

with different rule priorities and blacklists)? (Section 2).

(2) Proposing ARMS (Figure 1), a framework which handles all

bookkeeping necessary to correctly evaluate such rules sys-

tems (Sections 3.1–3.4).

(3) Exploring optimizationmethods (namely random search, greedy

expansion, and genetic programming) to improve the original

system according to user-defined criteria (Sections 3.5-3.8).

(4) Evaluating our proposed solutions on both synthetic and real

data, demonstrating improvements to existing rules systems

deployed at Feedzai (Section 4).

Evaluating the performance of the whole fraud detection system

is simple: given the fraud labels (i.e., the chargebacks) and the

historical decisions, we compute performance metrics (e.g., recall

at a given false positive rate or FPR). However, it is not enough to

analyze the performance of each rule by itself. We need to consider

how it contributes to the entire system as its triggers may overlap

with other rules with different decisions and priorities. Blacklists are

another source of dependencies. Blacklisting rules, when triggered

due to fraudulent behavior, blacklist the user (or email, or card) so

that their future transactions are promptly declined. Deactivating

blacklisting rules has side effects on the blacklists themselves and,

therefore, in triggering or not rules that verify them.

1

ar
X

iv
:2

00
2.

06
07

5v
1

 [
cs

.L
G

]
 1

4
Fe

b
20

20

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD ’20 (submitted), August 22–27, San Diego, CA, USA D. Aparício et al.

labels

ℓ

 Blacklist
dependencies

BD

 Augment rules pool
(w/ priority shuffling)

λ
loss function

(a) Evaluate original rules system. (b) Augment rules pool + handle blacklists.

Augmented
rule triggers

R

p

μ
 Optimization
 method

Generate vectors of priorities/deactivations

(c) Optimize the system according to the loss function.

…

p
λ best system performance

 (loss, recall, FPR, …)

new rule
priorities

Best priorities

Ω
best

ploss function Ω
1

lossΩ <
best

loss

Original system
 performance

Ω
1

labels

ℓ

 Blacklist
dependencies

BD
p

Rules Subset

R ⊂ R+
Augmented
rule triggers

R
+

Rules

R best

best

a

pb

pc
best

p
priorities Compute

 Rule
triggers

R

labels

ℓ

+

(d) Results.

Figure 1: ARMS components: handling blacklists, priority shuffling, and optimizing a user-defined loss function.

In this work, we study the use case of a systemwith a pre-existing

set of rules and priorities to optimize according to a user-defined

objective function. As far as we know, we are the first to address the

proper evaluation and optimization of such complex rules systems.

A suitable goal is to minimize the number of rules and alerts while

keeping the original system’s performance (e.g., recall). We explore

three different methods (random, greedy, and genetic algorithms),

using synthetic data and data sets from real-world online merchants.

Our results show that ARMS can significantly reduce the number

of rules while maintaining the system’s performance. We stress

that rules can depend on expensive aggregations (e.g., the average

amount of the user’s transactions in the last month). Thus, ARMS

brings meaningful gains in practical fraud detection settings.

We organize the remainder of the paper as follows. Section 2

gives an overview of fraud detection systems and discusses related

work. Section 3 presents ARMS main components: handling black-

lists, rules system evaluation, priority shuffling, and rules system

optimization. Section 4 presents our results in synthetic data and

real-world clients. Finally, we discuss our conclusions in Section 5.

2 BACKGROUND
2.1 Fraud detection
We focus on fraud detection in online payments, where a fraud-

ster makes unauthorized transactions online. Fraud detection can

be formulated as a binary classification task: each transaction is

represented as a feature vector, z, and labeled as either fraudulent
(positive class, y = 1) or legitimate (negative class, y = 0). Other

approaches frame it as an outlier detection problem [9] that treats

fraudulent transactions as anomalies. Typical outlier detection is

unsupervised, and often results in much lower performance.

We consider fraud detection as a two-step process. First, when a

transaction occurs, a feature engineering step, д(z), is applied to the
raw features z, resulting in processed features, x. An example of a

processed feature (a profile) is the number of transactions for a card

in the last hour. Secondly, the automated fraud detection system

evaluates the transactions and decides between three actions: to

accept the transaction, to decline it, or to alert it to be manually re-

viewed (so that specialized fraud analysts investigate it and produce

a final decision). Reviews are complicated (i.e., subject to human

error) and expensive, as they require specialized knowledge and

introduce unnecessary friction for legitimate transactions.

2.2 Automated fraud detection system
We consider an automated fraud detection system consisting of a

machine learning model followed by a rule-based system.

2.2.1 Machine learning model. The supervised machine learn-

ing model trains offline using historical data. When evaluating a

transaction, the model then produces a score, ŷ ∈ [0, 1], that is
typically the probability of fraud given the features, P (y = 1 | x).

2.2.2 Rule-based system. Rules consist of conditions and corre-

sponding actions. Depending on the action, the rules can be accept,
alert, or decline rules. Rules may depend on the model score (e.g., if

ŷ < 0.5 then accept the transaction), and the features (e.g., if the

transaction is above a risky amount, then alert/decline it). Since a

transaction might trigger multiple rules with contradictory actions,

priorities are necessary. Finally, rules can be switched on and off

at any time. The rules system encapsulates all rules, their state (ac-

tive or not), and priorities. Generally, the rule system is a function,

f (x, ŷ), that evaluates a list of rules and returns an action.

2.3 System evaluation
To assess system performance, we compare the system’s decisions

with the labels coming from chargebacks or the fraud analysts’

decisions. Then, we compute the relevant performance metrics.

2.4 Rule evaluation
The rules system, f (x, ŷ), receives the processed features and the

model score and returns a decision to accept, alert, or decline. It

comprises a set of rules, R = (R1,R2, . . . ,Rk), applied individually
on incoming transactions. Hence, transactions may trigger none,

one, some, or all of these rules.

We aim to measure the contribution of individual rules to the

system. Typically, at the time of the deployment of the system (i.e.,

after training with the latest data), rules and priorities perform well.

However, as time goes by, fraud patterns change, and performance

degrades. This degradation is acute in fraud detection, given the ad-

versarial context (fraudsters often change their strategies). Whereas

some rules remain beneficial, others may become redundant or even

degrade the performance of the system. Figure 2 illustrates how an

initially good rule can degrade over time. As rule-based systems

remain in production for a long time, it is essential to monitor

how individual rules are impacting the system, namely their fraud

detection and computational performances (rules can be heavy to

compute, e.g., if they depend on profiles).

One naive approach is to evaluate each rule independently by

measuring how well its decisions match the labels (intuitively, ac-

cept rules should find legitimate transactions, while alert and de-

cline rules should find fraudulent transactions). Then, if the rule’s

performance is inadequate, it is discarded. Notwithstanding, this

2

ARMS: Automated rules management system for fraud detection KDD ’20 (submitted), August 22–27, San Diego, CA, USA

Alert rule Accept rule Decline rule

Time

(a) (b) (c) (d) (e)

fraudulent
legitimate

Alert rule

Figure 2: Rule degradation: (a) transactions in the feature
space, (b-d) an alert, an accept, and a decline rule are progres-
sively added, and trigger for some transactions. The alert
rule has a good ratio of correct alerts when added, but by
the end it is alerting only legitimate transactions (e).

approach is problematic and insufficient because it disregards in-

teractions between rules. Consider the following examples:

• Low-priority rules can perform outstandingly when no high-

priority rules are triggered (e.g., in specific corner cases), but

perform very poorly if used individually.

• Turning off high-priority rules allows lower-priorities rules to

act; this can lead to different decisions by the system.

Instead of this naive approach, we build a rules management

system that takes into account the interactions between rules with

different actions and different priorities when evaluating them.

2.5 State-of-the-art
We review current work on the optimization of rule-based systems

using search heuristics. Table 1 shows an overview of the methods.

Ishibuchi et al. propose a method to maximize correctly classi-

fied instances, while reducing the number of rules, using genetic

programming [7]. This approach is not sufficiently flexible for the

fraud detection use-case, as the client (e.g., a merchant or bank) may

want to optimize for other metrics (e.g., recall, or a combination of

metrics). Moreover, their method neglects priorities, and it is not

clear if it scales up well for fraud detection data sets with millions

of transactions (they used the Iris data set [5], which consists of 150

records). In a later study, they compare multiple heuristics, namely

greedy search and genetic programming, in four small data sets [8].

Some approaches target specific use-cases, namely financial trad-

ing [1] or opinion mining [10]. Besides the domain, another crucial

difference between our research and the work by Allen et al. is that,

instead of learning new rules, we optimize existing rule systems.

Rosset et al. describe a method that learns and selects rules for

telecommunication fraud detection [11]. Like us, the authors stress

the importance of choosing a good set of rules, instead of a set

of good rules. However, we target online transaction fraud and

optimize a more complex system with priorities and blacklists.

Table 1: Comparison of rules management systems.

[8] [1] [10] [11] [3] [6] ARMS
various rule actions ✗ ✗ ✗ ✗ ✗ ✗ ✓
rule priorities ✗ ✗ ✗ ✗ * ✗ ✓
> million instances ✗ ✗ ✗ ✗ ✗ ✗ ✓
user-defined loss ✗ ✗ ✗ ✗ ✗ ✗ ✓
blacklists ✗ ✗ ✗ ✗ ✗ ✗ ✓
rule learning ✗ ✓ ✗ ✓ ✗ ✗ ✗

* optimizes rule weights instead

Table 2: Notation.

Features X = (X1,X2, ...,Xm)
Rules R = (R1,R2, ...,Rk)
Priority space P = {p ∈ Z | p ≥ −1}
Rule priority pi ∈ P
Rule active condition pi > −1
Rules priority vector p = (p1,p2, ...,pk)
Priority-action map a : pi → {accept ,alert ,decline}
Transaction feature vector x = (x1,x2, ...,xm)
Transactions X = (x1, x2, ..., xn)
Transaction rules vector r = ({p1,−1}, {p2,−1}, ..., {pk ,−1})
Rules triggers matrix R = [rx1 , rx2 , ..., rxn]T
Labels vector ℓ = [ℓx1 , ℓx2 , ..., ℓxn]T
Blacklist updater rules Bu ⊂ R
Blacklist checker rules Bc ⊂ R
Loss function λ
Performance Ω (contains Ωloss , Ωr ecall , etc.)

Duman et al. propose a system combining genetic programming

and scatter search to optimize ruleweights and other parameters [3].

Similar to our case, the rules are based on expert knowledge and

suffer from concept drift. Each rule has a weight corresponding to

its contribution to a fraud score, unlike our work, which considers

priorities to activate a single rule. Furthermore, Duman et al. do

not consider blacklists, different rule actions (e.g., accept, alert, and

decline), and uses a predefined fitness function that minimizes the

money loss. Additionally, the most substantial data set considered

contains only ≈ 250 thousand transactions and 43 rules and pa-

rameters. They report money savings of 212% at the cost of a 67%

increase in false positives, and, after manual tuning, they settled for

a system with savings of 189% and a 35% increase in false positives.

Gianini et al. optimize a system of 51 rules using a game theory

approach [6]. They measure rule importance using Shapley val-

ues [13] as a measure of contribution to the system. They propose

two strategies: (1) select the n rules with highest Shapley values

(and deactivate the others) and (2) greedy expansion of the set of

rules using the Shapley values of the rules. Both strategies per-

formed identically and were able to reduce the number of rules

down to 30 while maintaining the original system’s F-score. Like

Duman et al. [3], this approach disregards essential constraints of

the fraud detection system we are considering: rule priorities, rule

actions, blacklists, and support for a user-defined loss function.

3 ARMS
We start this section with an overview of ARMS. Then, we describe

in detail each of its main components: handling blacklisting rules,

the evaluation of the rule-based system, rule priority shuffle, and,

finally, the optimization strategies to select rules.

3.1 System overview
Algorithm 1 gives a general view of ARMS. We refer the reader to

Table 2 for the notation used throughout this work.

ARMS receives the following information as inputs:
• Features. A vector of features, X (e.g., username, email).

• Transactions. A matrix Xn×m
containing the values of them

features for each of the n transactions. It is needed to compute

3

KDD ’20 (submitted), August 22–27, San Diego, CA, USA D. Aparício et al.

blacklists (i.e., to know blacklisted values for each feature, e.g.,

username = fraudster91).
• Triggers or activations. A matrix Rn×k containing the rule

triggers of the k rules for each of the n transactions. Each

cell Ri j = −1 if rule Rj did not trigger for transaction xi or
Ri j = pj (i.e., the rule’s priority) if it did.
• Labels. A vector with the label for each transaction, ℓ.
• Priorities. A vector with the priority of each rule, p.
• Actions. A map, a, mapping rule priorities to actions (i.e.,

accept, alert, or decline).

• Blacklisting rules. A set of blacklisting rules containing rules

that update the blacklist, Bu , and rules that check it, Bc .
• Method. Optimization strategy, µ (i.e., random search, greedy

expansion, or genetic programming).

• Loss function. A loss function, λ, defined by the user.

• Priority shuffle. A boolean,arp, specifyingwhether to augment

the rules pool R by cloning rules with different priorities.

• Optimization parameters. Set of parameters, θ , which are

specific to the optimization strategy (e.g., population size or

mutation probability for the genetic algorithm or the number

of evaluations for the random search).

ARMS starts by addressing the blacklist dependencies (line 1 of

Algorithm 1; details in Section 3.2). Then, ARMS evaluates the orig-

inal system’s performance, Ω1
(line 2 of Algorithm 1; Section 3.3).

This evaluation runs before optimization because the loss function

often depends on the original performance (e.g., optimize the FPR,

while maintaining recall). Afterwards, ARMS augments the rules

pool, if the user so desires (lines 3-4 of Algorithm 1; Section 3.4).

This adds new rules with the same triggers as existing rules, but

with different priorities. The rationale is that changing priorities

might improve the system. Finally, ARMS optimizes the rules sys-

tem (line 5 of Algorithm 1; Section 3.5). In essence, ARMS turns off

rules and changes their priorities, obtaining a new priority vector,

pbest, to reduce the loss of the system, Ωbest
.

Algorithm 1 ARMS: Automated Rules Management System.

Input: Vector X, Matrix X, Matrix R, vector ℓ, vector p, map a, set
B, loss function λ, method µ, parameter arp ∈ {0, 1}, parameters θ

Output: Vector pbest, performance Ωbest

1: BD← computeBlacklistDependencies(R, X, X, B)
2: Ω1 ← evaluate(X, R, ℓ, p, a, B, BD, λ)
3: if arp = 1 then
4: R← augmentRulesPool(R, p, a)
5: (pbest,Ωbest) ← µ.optimize(X, R, ℓ, p, a, BD, λ, Ω1

, θ)

3.2 Handling blacklists
Both analysts and rules can blacklist entities. If an analyst finds

transaction x to be fraudulent, they can blacklist some of its entities

(e.g., in the future, always decline transactions from the email used

in transaction x). Similarly, blacklist updater rules add entities to

the blacklist when they trigger. Other rules, called blacklist checker
rules, trigger when a transaction contains a blacklisted entity.

Therefore, blacklist rules have side effects. Deactivating blacklist

updater rules can lead to blacklist checker rules not triggering,

and affect the system’s performance. Thus, we need to take this

into account when evaluating the system. For this purpose, ARMS

keeps a state of the blacklists and manages them according to the

interaction between blacklist updater and blacklist checker rules

(for a detailed description, we refer to Supplementary Algorithm S1).

3.3 Rules system evaluation
ARMS evaluates (Algorithm 2) the original system and the con-

figurations produced by the optimization strategies (Section 3.5).

It creates an empty confusion matrix, V (line 2), to be updated

by traversing each transaction, x ∈ X, alongside its rule triggers,
ri ∈ R, and its label, ℓi ∈ ℓ (lines 3-9). For each transaction:

(1) ARMS computes the activations r′i (i.e., what rules are active
and with what priority), using priority vector p (line 4). When

ARMS is evaluating the original system, p contains the original
rules’ priorities; however, rule priority shuffling and optimiza-

tion strategies generate variations of p.
(2) ARMS checks whether to turn off any blacklist checker rules

as a side-effect and stores that in r′′i (line 5).

(3) ARMS obtains the final decision, oi , from r′′i , i.e., to accept,

alert, or decline (line 6). It is the action of the highest priority

rule triggered for the transaction that is active.

(4) ARMS evaluates the decision, oi , against the label ℓi , storing
it in vi (line 7). Accepting a legitimate transaction is a true

negative. Declining/alerting a legitimate transaction is a false

positive. Declining/alerting a fraudulent transaction is a true

positive. Accepting a fraudulent transaction is a false negative.

The confusion matrix, V, is updated with vi (line 8).

Finally, ARMS uses the confusion matrix V to compute the rule

configuration’s performance, Ω, based on a user-defined loss func-

tion, λ (line 9). The loss function allows optimizing (e.g., minimize

the number of active rules, maximize recall) and satisfying metrics

or constraints (e.g., keep the original system’s FPR). We discuss loss

functions used in synthetic data and real-world clients in Section 4.

Algorithm 2 Rules system evaluation.

1: function evaluate(X, R, ℓ, p, a, B, BD, λ)
2: V← initConfusionMatrix()

3: for all x ∈ X, ri ∈ R, ℓi ∈ ℓ do
4: r′i ← mask(ri, p)
5: r′′i ← handleBD(r′i , B, BD[x])
6: oi ← a(max(r′′i))
7: vi ← getTruthValue(oi , ℓi)
8: V← updateConfusionMatrix(V, vi)
9: Ω ← λ(V)
10: return Ω

3.4 Priority shuffle

Initial rule priorities require expert knowledge and are defined

by clients or fraud analysts. Over time, however, the system re-

quires adjusted priorities to deal with concept drift and incorporate

emerging knowledge (e.g., new rules). In this sectionwe discuss how

ARMS addresses priority shuffling for optimization (Section 3.5).

First, we discuss how ARMS changes the priority of individual rules.

Then, we discuss how ARMS can augment the initial rules pool by

cloning existing rules and assigning them alternative priorities.

4

ARMS: Automated rules management system for fraud detection KDD ’20 (submitted), August 22–27, San Diego, CA, USA

3.4.1 Random priority shuffle. Since the system might have

many rules and many possible priorities, the search space of all

possible rule priorities can be gigantic. A more efficient alternative

for such cases is to use random priority shuffle. For a given rule ri
with priority pi , ARMS changes its priority to pj , pi with the same

action, i.e., ai = aj . The new rule priority is sampled considering

uniform probabilities. Consider the illustrative example with three

types of accept rules: weak accept with priority 1, strong accept with
priority 3, and whitelist accept with priority 5. Random priority

shuffle can, for example, change the priority of a strong accept to

either 1 (weak accept) or 5 (whitelist accept).

3.4.2 Augment rules pool. Another option is to augment the

initial pool by cloning existing rules (i.e., same triggers), but assign-

ing them different priorities. Starting from the existing priorities,

p, we create variants for each pi ∈ p, with all possible alternative

priorities with the same action, E. Then, for eachpj ∈ E, ARMS adds

a new vector (a new "rule") with the same triggers as the original

rule and the new priority, pj , to the rules triggers matrix, R.

3.5 Optimization strategies
ARMS uses two fundamental mechanisms to optimize a rule-based

system: deactivate underperforming rules and change priorities. It

is unfeasible to test all possible combinations. Instead, we employ

three heuristics (methods): random search (Section 3.6), greedy

expansion (Section 3.7), and genetic programming (Section 3.8).

First, we give an overview of ARMS optimization (Algorithm 3),

as methods share a similar structure. The original system (i.e., with

rule priorities p and performance Ω1
) is the one to beat (line 1). Until

meeting a predefined stopping criteria (line 3), ARMS generates

new priority vectors, p′, which are variations of the original p (line

4). The criteria can be to stop after k hours, after computing n
variations, or when the loss between consecutive iterations does

not improve above a threshold ϵ . ARMS saves the variation with

lowest loss it finds, pbest, alongside its performance Ωbest
, and

returns them to the user (lines 5-8). The fundamental difference

between methods is how they generate the variations, p′.

Algorithm 3 ARMS optimization.

θ : parameters of the method

1: function µ.optimize(X, R, ℓ, p, a, BD, λ, Ω1
, θ)

2: (pbest,Ωbest) ← (p,Ω1)
3: while stoppingCriteriaNotMet() do
4: generate a new p′ from p
5: if p′ is the best so far then
6: save it as pbest

7: save its performance as Ωbest

8: return (pbest,Ωbest
)

3.6 Random search
A straightforward approach is to generate random rules priority

vectors, p′, and evaluate them against the original p, saving the best
rule configuration p′ that it found.While this approach seems naive,

it is a natural baseline that can be better and less expensive than

grid or manual searches [2]. Random search has two parameters:

• Rule shutoff probability, ρ. Percentage of rules to deactivate,

e.g., if ρ = 50%, then ARMS turns off ≈ 50% of the rules.

• Rule priority shuffle probability, γ . Percentage of rules with

priorities changed, e.g., if γ = 50%, then ARMS generates new

priority vectors for ≈ 50% of the rules.

For more detail, we refer to Supplementary Algorithm S2.

3.7 Greedy expansion
ARMS contains a greedy expansion module, that starts from a

set of inactive rules and greedily turns on rules, one at the time.

Greedy solutions are not guaranteed to find the global optimum.

Consider the following example, where we want to optimize recall

and rules R1, R2, and R3 have recall 70%, 69%, and 20%, respectively.
A greedy solution would pick R1 first. Now, imagine that rules

R2 and R3 are detrimental to R1, i.e., the system becomes worse

if we combine R1 with either R2 or R3. Hence, the final solution
is a system with only R1. Imagine, however, that R2 and R3 are

somewhat complementary, and that, when combined, the system’s

recall is > 70%. Then, the global optimum is > 70%, and the greedy

solution is not optimal. Nevertheless, greedy heuristics can find

useful solutions in a reasonable time.

For more detail, we refer to Supplementary Algorithm S3.

3.8 Genetic programming
Genetic programming is standard in classification tasks [4], such as

fraud detection. It continuously improves a population of solutions

by combining them using crossovers and random mutations, while

keeping a fraction of the best solutions for the next iteration.

In our case, we build a population of random rule configurations

and improve them with genetic programming. The algorithm has

three parameters:

• Population size,ψ . Number of configurations per iteration, e.g.,

ifψ = 100, ARMS evaluates 100 different rule configurations

per iteration.

• Survivors fraction, α . Fraction of the top configurations that

survive for the next iteration, e.g., if ψ = 100 and α = 20%,

only the 20 best solutions survive for the next iteration. If α is

high, then we might achieve higher variability but get stuck

trying to improve bad solutions. If α is low, then the lack of

variability might prevent the system from reaching a good

solution.

• Mutation probability, ρ. The percentage of rules subject to

random mutation, e.g., if ρ = 20%, then 20% of the rules are

randomly mutated (i.e., the child rule configuration mutates

the parents rules configuration). If ρ is high, we leave little

room for genetic optimization and are essentially doing a ran-

dom search. If ρ is low, we are more dependent on finding

good parent configurations.

For more detail, we refer to Supplementary Algorithm S4.

4 EXPERIMENTS AND RESULTS
We test the following hypotheses: (h1) ARMS turns off rules and,

at least, maintains system performance, (h2) ARMS changes the

priority of rules and improves system performance, (h3) results are
stable (i.e., similar across folds).

5

KDD ’20 (submitted), August 22–27, San Diego, CA, USA D. Aparício et al.

4.1 Synthetic data
Since we can not find public data sets similar to our own, we use

synthetic data to test hypotheses (h1–h2). Later, we also test (h1–
h3) in real datasets. We generate 225k labels with a fraud rate of 5%

(i.e., 11250 positive labels) and simulate accept, alert, and decline

rules from the labels. The support of a rule corresponds to how

many times it triggers. An accept rule with negative predictive

value (NPV) of k% is correct k% of the times that it triggers (i.e.,

out of all triggers, k% will be true negatives). The same goes for the

precision (PPV) of an alert or decline rule (i.e., out of all triggers, k%
will be true positives). We sample the support, NPV and precision

from Gaussian distributions and use 10 different priority levels (for

details see Supplementary Section A.1) and divide the data set into

three splits: train, validation, and test, with 75k "transactions" each.

4.2 Methodology
We run ARMS on the train set and do parameter tuning in the

validation set. We detail the parameter space in Supplementary

Section A.2. We ensure that results are comparable between random

search and genetic programming by keeping the number of rule

configuration evaluations fixed (i.e., n = 300k).

We optimize the loss function from Equation 1 with α = 0.1,

β = 0.5, andγ = 0.4. Note thatΩ1
andΩ′ are the performance of the

original system and of a configuration found by ARMS, respectively;

Ωrules% is the percentage of active rules, Ωr ecall% is the recall, and

Ωaler t% is the alert rate.

λ(R′) = α ∗ Ω′rules% − β ∗ Ω
′

r ecall + γ ∗ Ω
′

aler ts% (1)

Finally, we evaluate the four final methods in the test set: the

original system, and the best rule system configuration found by

random search, greedy expansion, and genetic programming.

4.3 Results on synthetic data
After running parameter tuning (note that the greedy expansion

method does not have any parameter), we find that the following

parameters were the best:

• Random search: ρ = 40%.

• Genetic programming: ρ = 10%,ψ = 30, α = 5%.

For brevity, we omit results for other parameters; we do a more

thorough analysis of the parameters in real data sets (Section 4.6).

We observe that all methods improved upon the original system,

and that genetic programming was the one with highest perfor-

mance (Table 3). When we ran augmented rules pool (ARP) before

optimization, results consistently improved. Thus, we verify hy-

pothesis (h1) and (h2).

Table 3: Performance of ARMS in synthetic data.

recall alerts % rules off loss
original 13.11% 0.779% none 0.0376

random 79.53% 1.013% 38 (38.8%) -0.1837

greedy 54.42% 1.746% 34 (34.7%) -0.1998

genetic 52.82% 1.067% 45 (45.9%) -0.2058

greedy w/ arp 53.30% 1.107% 43 (43.9%) -0.2060

genetic w/ arp 53.09% 0.97% 45 (45.9%) -0.2075

May June July Aug. Sept. Oct.

0

−1

−2

−3

−4∆
fra

ud
ra

te
(p

p)

D1
D2

Figure 3: Datasets fraud rate evolution (concept drift).

4.4 Real-world data sets
We evaluate ARMS on representative samples of real-world data

sets of two online merchants. In both cases, an automated fraud

detection system actively scores transactions in production. We

collected the rule triggers, model decisions, and blacklists. The data

sets comprise dozens of rules, with different actions (i.e., accept,

alert, and decline) and multiple priorities (more details in Supple-

mentary Section A.3). For privacy compliance, we refer to the data

sets simply as D1 and D2.
The data covers six months of transactions. We divide each data

set in four sequential and overlapping folds of three months each

(for temporal cross-validation, detailed in Section 4.5.3) and split

each fold into three sequential sets (train, validation, and test) of

one month each.

Unless explicitly stated, when wemention fraud, we are referring
to validated fraud (i.e., chargebacks or fraud confirmed by analysts,

not transactions declined by the automated fraud detection system).

Due to the adversarial setting and other factors, we observe concept

drift in both data sets. Figure 3 shows the evolution of the fraud

rate in D1 and D2 (with May 2018 as reference), highlighting the

system’s ability to reduce fraud over time.

While both clients are online merchants, they have three impor-

tant differences:

(1) D1 has more non-verified declined transactions. It has ≈ 14x
more auto-declined transactions than confirmed frauds, due

to the specific requirements of the client. Using automati-

cally declined transactions for training is dangerous as it

creates a feedback loop. Thus, we disregard them in train-

ing and validation but use them in testing so that results

are comparable to a production setting. Moreover, for this

dataset, ARMS does not optimize decline rules.

(2) Only D2 uses blacklists.

(3) The active rules in D2 changed multiple times during the

period under study, while the rules in D1 never changed.

4.5 Methodology
4.5.1 Optimization metrics (loss functions). Online merchants

are required to keep the fraud-to-gross rate (FTG) under a certain

threshold, or else they face fines. Thus, a sensible approach is to

minimize the FPR and ensure that recall is within the legal re-

quirements. The system should be able to pick up all the necessary

fraud (ideally, all of it) without declining legitimate transactions.

Additionally, reducing the number of rules and alerts decreases the

overall cost of the system. We use different loss functions for each

data set, showing ARMS’ ability to fit diverse use-cases:

6

ARMS: Automated rules management system for fraud detection KDD ’20 (submitted), August 22–27, San Diego, CA, USA

• In D1, the FPR is artificially high due to the many trans-

actions declined by the automated fraud detection system.

Therefore, our focus is to remove rules, Ω′rules%, and reduce
alerts, Ω′aler t%, while maintaining approximately the same

recall, Ω′r ecall , as the original rule-based system, Ω1

r ecall ,

(Equation 2). We use α = β = 1

2
, thus giving equal impor-

tance to both objectives.

• In D2, the objective is to remove rules, Ω′rules%, but also to

improve recall, Ω′r ecall , while maintaining approximately

the same FPR, Ω′f pr , as the original system, Ω1

f pr , (Equa-

tion 3). We use α = 0.05 and β = 0.95, thus attributing more

importance to improving recall than to reducing the number

of rules.

λ(R′) =
{
α ∗ Ω′rules% + β ∗ Ω

′

aler t% if Ω
′

r ecall ≥ 0.95 ∗ Ω1

r ecall
α + β + (Ω1

r ecall − Ω
′

r ecall) otherwise

(2)

λ(R′) =
{
α ∗ Ω′rules% − β ∗ Ω

′

r ecall if Ω
′

f pr ≤ Ω1

f pr
α + (Ω1

f pr − Ω
′

f pr) otherwise

(3)

4.5.2 Baselines. We compare ARMS optimized rule systems

against three baselines:

(1) Original system (All on): system with all rules and origi-

nal priorities.

(2) Mandatory system (All off): system with no rules except

for the ones that cannot be deactivated due to business rea-

sons, with the original priorities.

(3) Random search: generate r independent rule configura-
tions, using different values of ρ (Section 3.6).

If ARMS finds rule systems better than baselines 1 and 2 by

turning off rules, we successfully address (h1). If it further improves

its performance by also tuning rule priorities, we address (h2).

4.5.3 Temporal cross validation (TCV). We use TCV to verify

(h3). For each data set, we create four folds composed of three sets

(i.e., train, validation, and test) of one month each. We train ARMS

with different search heuristics and parameters on each train data

set, evaluate the resulting configurations on the validation data set,

and identify the best one for each heuristic. Finally, we evaluate

the winners and the baselines on the test set.

4.5.4 Optimization strategies. We run ARMS with two differ-

ent optimization strategies: greedy expansion (Section 3.7) and

genetic programming (Section 3.8). Results for both are shown in

Sections 4.6.2 and 4.6.3, respectively.

4.6 Results on real data
Unless stated otherwise, the results refer to rule configurations

obtained in the train data of each fold and evaluated in the respective

validation set. Results shown are always relative to the original

system baseline and show the gains relative to the current system

in production, i.e., ∆loss is the difference between the loss of the

system being evaluated and the original one.

A B C D
validation split

−2.5

0.0

2.5

5.0

∆
lo
ss
·1

0−
1

all on
all o�

rand ρ = 4%
rand ρ = 16%

rand ρ = 28%
rand ρ = 46%

rand ρ = 70%
rand ρ = 88%

Figure 4: Baselines comparison in D1.

A B C D
validation split

−2.5

0.0

2.5

5.0

∆
lo
ss
·1

0−
1

all on all o� rand ρ = 46% greedy

Figure 5: Greedy expansion against baselines in D1.

4.6.1 Baselines comparison. We compare the original system

(all on) against the mandatory system (all off) and against random

search, with n = 10000 and ρ as a tunable parameter with values

spaced out in 4% intervals (Figure 4 for D1). We observe that the

mandatory system has a higher loss than the other systems, as it

fails to meet the recall constraint from Equation 2. We also observe

that random search is almost always superior to the original system,

regardless of ρ. In a few cases, the random search is worse than

the original system because it does not meet the recall constraint,

namely with aggressive configurations (e.g., ρ = 88%). On the other

hand, aggressive random search (higher ρ) can decrease the loss

significantly, so there is a trade-off between being able to meet

the recall constraints and lowering the loss. We observe similar

behavior for D2, and thus omit results for brevity. Nevertheless, we

show metrics besides the loss for D2 in Supplementary Figure S1.

From these results, we decide to use random search with ρ = 46%

forD1, and ρ = 58% forD2, for the baselines, alongside the original
system and the mandatory system for both data sets.

4.6.2 Greedy expansion results. We test greedy expansion with

and without ARP. We find that ARP did not improve the system

in D1 or D2. One possible explanation is that greedy expansion

yields simple systems with few rules, so it did not benefit from

ARP. Another possibility is that the original priorities are already

well-tuned for both data sets as they correspond to mature systems.

When compared against the baselines, the outcomes vary. For

D1, the greedy expansion was superior to the baselines except for

the second fold, where it failed to met the constraints (Figure 5). In

the other three folds, greedy expansion was able to remove ≈ 75% of

the rules and reduce alerts. For D2, however, the greedy expansion

7

KDD ’20 (submitted), August 22–27, San Diego, CA, USA D. Aparício et al.

10 30 50 70 90 110

top-n rules

0.85

0.90

0.95

1.00

N
D

CG

fold B fold C fold D

Figure 6: Greedy expansion rule order consistency in D1.

was worse than the baselines in two of the four folds, as it did not

respect the constraints (Supplementary Figure S2).

We also evaluate the consistency between rules across folds.

Recall that the greedy expansion obtains an ordered list of rules

sequentially by importance. We compare the ordered lists across

folds and compute their normalized discounted cumulative gain

(NDCG) in Figure 6.We show results of the first fold of D1 compared

with the other folds. We observe that rules are consistent across

folds (NDCG values are consistently > 0.7), but the NDCG line

drops (e.g., important rules in fold A are more similar to important

rules in fold B than in fold C). We observe similar behavior in D2
(omitted for brevity).

4.6.3 Genetic programming results. We evaluate how the genetic

programming method (Section 3.8) improves fraud detection. Since

our datasets are very big, we can not perform a grid search on all

parameters. Thus, we have a three phase process.

First, we find a good set of default parameters. For this purpose,

we setψ = 100 and do grid search on α and ρ. We do n = 10000 eval-

uations by default, i.e., forψ = 100, then r = 100 runs. We perform

a grid search on α ∈ [2%, 5%, 10%, 20%] and ρ ∈ [0%, 2%, 5%, 10%].
For D1, we find that ρ = 10% outperforms the baselines across

datasplits and that random search takes longer to achieve similar

losses (e.g., for fold A; Supplementary Figure S3). The overall best

parameters were found to be ρ = 10%, α = 5%, and ρ = 5%.

Secondly, we study how each parameter influences the loss. For

this purpose, we vary only one parameter at a time and keep the

others at the default values. Since parameters r ,ψ , ρ, α are ordinal,

we try 10 different values for each and see how increasing each

parameter individually influences the loss. Figure 7 shows results

for fold A of D1. We observe that, in general, increasing ρ and α
makes the performance worse; however the best α is 10%, thus,

keeping some of the best individual configurations is important.

We also observe that r influences the loss much more thanψ (e.g.,

both (r = 100,ψ = 10) and (r = 10,ψ = 100) perform 1000 rule

evaluations, but the first one leads to lower losses). Typically, the

loss improves as you increase r and ψ , but it plateaus relatively
quickly for both (i.e., r at 300,ψ at 400). Similar conclusions hold

for D2 (omitted for space concerns). We did not observe gains in

changing rule priorities during genetic optimization.

Finally, we measure ARMS performance on the test sets. We

compare ARMS using genetic programming against the baselines

and ARMS using greedy search. To do this, we evaluate the rules

deactivations suggested by ARMS (trained on the train sets and

evaluated in the validation sets) on the respective test sets of each

0 18 36 54 72 90

ρ : mutation probability (%)

−3.5

−3.0

−2.5

∆
lo
ss
·1

0−
1

0 18 36 54 72 90

α : survivors rate (%)

−3.50

−3.25

−3.00

−2.75

−2.50

∆
lo
ss
·1

0−
1

0 200 400 600 800 1000

r : number of runs

−3.5

−3.0

−2.5

∆
lo
ss
·1

0−
1

0 200 400 600 800 1000

ψ : population size

−3.5

−3.4

∆
lo
ss
·1

0−
1

Figure 7: Genetic: influence of r ,ψ , ρ, α on fold A of D1.

fold. ForD1, we evaluate the best rule configuration found by ARMS

using r = 1000,ψ = 250, α = 5%, ρ = 5%, and no priority shuffling.

For D2, we evaluate the best rule configuration found by ARMS

using r = 1000,ψ = 150, α = 20%, ρ = 5%, and no priority shuffling.

For D1, we observe that greedy and genetic optimization per-

formed similarly and better than random search with ρ = 46%

(Figure 8). For D2, we observe that random search and the genetic

programming approaches perform similarly; the greedy method

fails to comply to the constraints in two of the four folds (Figure 9).

In order to check the consistency of ARMS across data folds,

we measure the Jaccard similarity [12] of the deactivated rules

suggested by ARMS in different splits. We see that the Jaccard is

A B C D
test split

−2.5

0.0

2.5

5.0

∆
lo
ss
·1

0−
1

all on all o� rand ρ =46% greedy genetic

Figure 8: Performance of ARMS on the test sets of D1.

A B C D
test split

0

2

4

6

∆
lo
ss
·1

0−
1

all on all o� rand ρ =58% greedy genetic

Figure 9: Performance of ARMS on the test sets of D2.

8

ARMS: Automated rules management system for fraud detection KDD ’20 (submitted), August 22–27, San Diego, CA, USA

Table 4: ARMS consistency results (i.e., across folds). We highlight in bold the lowest loss for each fold.

A B C D
A 1 0.930 0.902 0.826

B – 1 0.950 0.820

C – – 1 0.829

D – – – 1

(a) Jaccard of removed rules (D1).

A B C D
A 1 0.789 0.696 0.636

B – 1 0.773 0.565

C – – 1 0.708

D – – – 1

(b) Jaccard of removed rules (D2).

A B C D
A 0.275 0.344 0.274 0.273

B – 0.348 0.277 0.275

C – – 0.268 0.267

D – – – 0.264

(c) Loss on future folds (D1).

A B C D
A -0.626 -0.613 -0.651 -0.662

B – -0.612 -0.651 -0.662

C – – -0.678 -0.696

D – – – -0.704

(d) Loss on future folds (D2).

higher for D1 than D2 (Table 4 (a)-(b)). The fact that D2 rule set

changes across folds obviously leads to intrinsically lower values

(i.e., regardless of what ARMS deactivates). We also evaluate sys-

tems trained on a given fold in more recent folds (e.g., we train

ARMS on fold A and evaluate it the test set of A, B, C and D). We

observe that systems trained on older folds have good performance

on more recent test sets (Table 4 (c)-(d)).

4.6.4 Summary. We evaluated ARMS on two big online mer-

chants. For D1, ARMS using genetic programming (or greedy ex-

pansion) was able to remove ≈ 50% of the original 193 rules, while

maintaining the original system performance (i.e., keeping 95% of

the original recall). Thus, ARMS was able to improve the original

system (h1). We also saw that results are stable across data-splits

(h3). We did not see gains of using priority shuffling (h2). For D2,
we observed that ARMS was able to remove ≈ 80% of the system

rules while maintaining the original system performance (i.e., keep-

ing a low FPR). Thus, ARMS improved the original system (h1).
Similar to D1, we found evidence supporting (h3) but not (h2).

4.6.5 Discussion. Real-world transaction data sets for fraud de-

tection pose several challenges. Auto-declines lead to unreliable

labels, and thus we cannot verify if a system positive is a true pos-

itive, meaning that decline rules cannot be evaluated unless an

analyst verifies auto-declines. In practice this is difficult because

fraud analysts’ time is a very limited resource. The two systems

that we chose are also particularly hard to optimize since they

have been in production for years and have been manually tuned

by data scientists. Finally, we evaluated ARMS’ performance on

past transactions and did not measure its performance in produc-

tion. We think that putting ARMS in production and continuously

optimizing the rules system could lead to better results.

5 CONCLUSION
We have proposed ARMS, a framework that optimizes rules systems

using search heuristics, namely random search, greedy expansion,

and genetic programming. To the best of our knowledge, ARMS

is the first to (1) handle different rule priorities and actions, (2)

address blacklists side effects, and (3) optimize user-defined func-

tions. These components are essential in real-world fraud detection

systems. Our results in real-world clients demonstrate that ARMS

is capable of maintaining the original system’s performance while

greatly reducing the number of rules (between 50% and 80%, in our

experiments) and minimizing other metrics (e.g., alert rate).

Currently we are adding a rules suggestions module to ARMS,

which is beyond the scope of this paper. In the future we also plan

to incorporate a module to simultaneously tune the rules and the

machine learning model threshold.

ACKNOWLEDGMENTS
We want to thank the other members of Feedzai’s research team,

who always gave insightful suggestions. In particular, we want

to give special thanks to Marco Sampaio, for reviewing the paper

internally, and Patrícia Rodrigues, for starting ARMS.

Note on reproducibility
We make available a binary of ARMS, the synthetic data described

in Section 4.1 (as well as the script used to generate it), and all

the necessary steps to reproduce our results from Section 4.3 at

https://github.com/feedzai/research-arms. For privacy compliance,

we can not share our clients data sets.

REFERENCES
[1] Franklin Allen and Risto Karjalainen. 1999. Using genetic algorithms to find

technical trading rules. Journal of financial Economics 51, 2 (1999), 245–271.
[2] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[3] Ekrem Duman and M Hamdi Ozcelik. 2011. Detecting credit card fraud by

genetic algorithm and scatter search. Expert Systems with Applications 38, 10
(2011), 13057–13063.

[4] Pedro G Espejo, Sebastián Ventura, and Francisco Herrera. 2009. A survey on

the application of genetic programming to classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) 40, 2 (2009),

121–144.

[5] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.

Annals of eugenics 7, 2 (1936), 179–188.
[6] Gabriele Gianini, Leopold Ghemmogne Fossi, Corrado Mio, Olivier Caelen, Lionel

Brunie, and Ernesto Damiani. 2020. Managing a pool of rules for credit card

fraud detection by a Game Theory based approach. Future Generation Computer
Systems 102 (2020), 549–561.

[7] Hisao Ishibuchi, Ken Nozaki, Naohisa Yamamoto, and Hideo Tanaka. 1995. Se-

lecting fuzzy if-then rules for classification problems using genetic algorithms.

IEEE Transactions on fuzzy systems 3, 3 (1995), 260–270.
[8] Hisao Ishibuchi and Takashi Yamamoto. 2004. Comparison of heuristic criteria for

fuzzy rule selection in classification problems. Fuzzy Optimization and Decision
Making 3, 2 (2004), 119–139.

[9] Yufeng Kou, Chang-Tien Lu, Sirirat Sirwongwattana, and Yo-Ping Huang. 2004.

Survey of fraud detection techniques. In IEEE International Conference on Net-
working, Sensing and Control, 2004, Vol. 2. IEEE, IEEE, 749–754.

[10] Qian Liu, Zhiqiang Gao, Bing Liu, and Yuanlin Zhang. 2015. Automated rule

selection for aspect extraction in opinion mining. In Twenty-Fourth International
Joint Conference on Artificial Intelligence.

[11] Saharon Rosset, Uzi Murad, Einat Neumann, Yizhak Idan, and Gadi Pinkas. 1999.

Discovery of fraud rules for telecommunicationsâĂŤchallenges and solutions.

In Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 409–413.

[12] Cesare Baroni Urbani. 1980. A statistical table for the degree of coexistence

between two species. Oecologia (1980), 287–289.
[13] Eyal Winter. 2002. The shapley value. Handbook of game theory with economic

applications 3 (2002), 2025–2054.

9

https://github.com/feedzai/research-arms

KDD ’20 (submitted), August 22–27, San Diego, CA, USA D. Aparício et al.

A SUPPLEMENTARY MATERIALS
A.1 Synthetic data
The set of rules comprises 8 accept rules, 30 review rules, and 60

decline rules. The support of the accept rules was sampled from a

Gaussian distributionN(45000, 225002), while the support of the re-
view and decline rules was sampled fromN(22.5, 225.02). The NPV
of accept rules was sampled fromN(0.75, 0.202), while the precision
of the alert and decline rules was sampled from N(0.17, 0.052).

Rules have ten possible priorities. Accept rules have priority

pa ∈ {0, 1, 5, 6, 10}, alert rules have priority pl ∈ {2, 4, 7, 9}, and
decline rules have priority pd ∈ {3, 8}.

A.2 Synthetic data parameter tuning
A.2.1 Random search. We use 16 mutation probabilities, i.e.,

ρ ∈ [4%, 94%], in intervals of 4%, i.e., ρ = 4%, ρ = 8%, ...

A.2.2 Genetic programming. We use three mutation probabili-

ties, i.e., ρ = 10%, ρ = 20%, and ρ = 30%. We use two population

sizes, i.e.,ψ = 20 andψ = 30. Finally, we use two survivors fractions,

i.e., α = 2% and α = 5%.

A.3 Real-world datasets
A.3.1 D1. The client has 198 rules, with one of three possible

actions: accept, alert, and decline. Out of the 198 rules, 30 of them are

accept rules, 89 are alert rules, and 79 are decline rules. Accept rules

have four different priority levels pa ∈ {1, 8, 10, 15}, alert rules have
two pa ∈ {5, 11}, and decline rules have three pd ∈ {6, 9, 12}. If no
rules are triggered, the default action is to accept the transaction.

The dataset contains few validated fraud, i.e., of the declined (by

the model/rules) and fraudulent population of transactions, only a

small portion was validated by analysts or via chargeback.

We note that decline rules and auto-declined transactions are

ignored in the train and validation datasets. We make this choice

because decline rules can not be validated. However, when we

measure performance in the test set, decline rules are included in

order to make results directly comparable to the results obtained

in production.

We do temporal cross validation (TCV) with four folds and each

set has one month of data.

A.3.2 D2. UnlikeD1, which has the same activated rules for the

whole period, in D2 the rules changed. During the seven months

period a total of 13 rules were added, while some were removed,

increasing the number of rules in the set from the original 77 to 90.

Rules have one of three outcomes: accept, alert, and alert&decline

(this means that most auto-declined are verified, unlike inD1). From
those, 6 are accept rules, 48 are alert rules, and 36 are alert&decline

rules. Accept rules have priority pa ∈ {0, 5, 10}, alert rules have
priority pl = 1, and alert&decline rules have priority pd ∈ {2, 4, 8}.
Three of the decline rules are blacklist checker rules, and all 36

alert&decline rules are blacklist updater rules.

Since D2 has a high ratio of validated fraud, all rules are opti-

mized by ARMS, however the auto-decline transactions are not

used during the training process, but are present in the test set in

order to make results directly comparable to the results obtained

in production.

We do temporal cross validation (TCV) with four folds and each

set has one month of data.

A.4 Supplementary Algorithms and Figures

Algorithm S1 Blacklist propagation.

1: function computeBlacklistDependencies(R, X, X, B)
2: BL← {}
3: BD← {}
4: for all x ∈ X do
5: for all Rj ∈ Bu do
6: if r j , −1 then
7: for all Xl ∈ X that Rj blacklists do
8: BL[(Rj , Xl : xl)].append([x.t ime, +∞])
9: for all Rq ∈ Bc that checks Xl do
10: BD[x].add(Rj ≺ Rq)
11: if r j = −1 then
12: for all Xl ∈ X that Rj can blacklist do
13: if x.t ime is in any BL[(Rj , Xl : xl)] then
14: r j ← pj
15: for all {xl ∈ x | xl is in any active blacklist } do
16: if (∄Rq ∈ Bc | pq , −1) then
17: for all {Rj ∈ Bu | (Rj , Xl : xl) ∈ BL} do
18: BL[(Rj , Xl : xl)].last()← [_, x.t ime]
19: for all Rq ∈ Bc do
20: if rq , −1 and | {(Ri ≺ Rq) ∈ BD[x] | Ri ∈ Bu } | = 0 then
21: BD[x].add(Rq ≺ Rq))
22: return BD

Algorithm S2 Random search optimization.

θ : { rule shutoff probability ρ , rule priority shuffle probability γ }

1: function Random.optimize(X, R, ℓ, p, a, BD, λ, Ω1
, θ)

2: pbest ← p
3: Ωbest ← Ω1

4: while stoppingCriteriaNotMet() do
5: prand ← p
6: for all pi ∈ prand do
7: with γ% probability, do:
8: pi ← randomPriorityShuffle(pi , a)
9: with ρ% probability, do:
10: pi ← −1
11: Ωrand ← evaluate(X, R, ℓ, prand , a, B, BD, λ)
12: if Ωrand

loss < Ωbestloss then
13: Ωbest ← Ωrand

14: pbest ← prand

15: return (pbest, Ωbest)

10

ARMS: Automated rules management system for fraud detection KDD ’20 (submitted), August 22–27, San Diego, CA, USA

Algorithm S3 Greedy expansion optimization.

θ : { backtracking bt ∈ {true, f alse } }
1: function Greedy.optimize(X, R, ℓ, p, a, BD, λ, Ω1

, θ)
2: pbest ← p
3: Ωbest ← Ω1

4: pkeep ← (−1, ..., −1)
5: pgreedy ← (−1, ..., −1)
6: Q ← ∅
7: while |Q | < |R | and stoppingCriteriaNotMet() do
8: Rkeep ← None

9: Ωkeep ← +∞
10: for all {Rj ∈ R | Rj < Q } do
11: pдr eedyj ← pj
12: Ωдr eedy ← evaluate(X, R, ℓ, pgreedy , a, B, BD, λ)
13: if Ωдr eedy

loss < Ω
keep
loss then

14: Rkeep ← Rj
15: Ωkeep ← Ωдr eedy

16: pkeep ← pgreedy

17: pдr eedyj ← −1
18: Q .add(Rkeep)

19: if Ωkeep
loss < Ωbestloss then

20: Ωbest ← Ωkeep

21: pbest ← pkeep

22: if bt is true and isBacktrackingTime() then
23: run greedy contraction to remove l rules, l < |Q |
24: return (pbest, Ωbest)

A B C D
validation set

−0.10

−0.05

0.00

∆
FP

R
(p

p)

A B C D
validation set

−2

−1

0

∆
re

ca
ll

(p
p)

A B C D
validation set

20

40

60

80

100

ac
tiv

e
ru

le
sr

at
e

(%
)

A B C D
validation set

−0.2

−0.1

0.0

0.1

∆
se

nt
to

re
vi

ew
(p

p)

all on rand ρ = 16% rand ρ = 28% rand ρ = 46% rand ρ = 58% rand ρ = 70% rand ρ = 88%

Figure S1: Baseline metrics comparison in D2.

A B C D
validation split

0

2

4

6

∆
lo
ss
·1

0−
1

all on rand ρ = 58% greedy greedy w/ arp

Figure S2: Greedy expansion results in D2.

Algorithm S4 Genetic programming optimization.

θ : { Population sizeψ , survivors fraction α , mutation probability ρ }

1: function Genetic.optimize(X, R, ℓ, p, a, BD, λ, Ω1
, θ)

2: pbest ← p
3: Ωbest ← Ω1

4: P← generateInitialPopulation(R, p,ψ , ρ)
5: while stoppingCriteriaNotMet() do
6: (P=, P−) ← evaluatePopulation(P, α)
7: P+ ← mutateAndCrossover(P= , α ,ψ , ρ)
8: P← {P=, P+ }
9: (P=, P−) ← evaluatePopulation(P)
10: pbest ← P=1
11: Ωbest ← evaluate(X, R, ℓ, pbest , a, B, BD, λ)
12: return (pbest, Ωbest)

13: function generateInitialPopulation(R, p,ψ , ρ)
14: P← ∅
15: for i ∈ [0, ψ [do
16: p′ ← p
17: for all p′j ∈ p′ do
18: with ρ% probability, do:
19: p′j ← −1
20: P[i] ← p′

21: return P

22: function mutateAndCrossover(P= , α ,ψ , ρ)
23: P+ ← ∅
24: for i ∈ [0, (1 − α) ∗ψ [do
25: pmother ← getRandomVector(P=)
26: pfather ← getRandomVector(P=)
27: pchild ← pmother

28: for all pchildj ∈ pchild do
29: with 50% probability, do:
30: pchildj ← p f atherj

31: for all pchildj ∈ pchild do
32: with ρ% probability, do:
33: pchildj ← randomPriorityShuffle(pi , a)

34: P+ .add(pchild
)

35: return P+

Figure S3: Genetic programming loss versus random search
by number of evaluations in foldA ofD1 (zoomed in the first
10000 rule evaluations; themethods nearly converge eventu-
ally)

11

	Abstract
	1 Introduction
	2 Background
	2.1 Fraud detection
	2.2 Automated fraud detection system
	2.3 System evaluation
	2.4 Rule evaluation
	2.5 State-of-the-art

	3 ARMS
	3.1 System overview
	3.2 Handling blacklists
	3.3 Rules system evaluation
	3.4 Priority shuffle
	3.5 Optimization strategies
	3.6 Random search
	3.7 Greedy expansion
	3.8 Genetic programming

	4 Experiments and results
	4.1 Synthetic data
	4.2 Methodology
	4.3 Results on synthetic data
	4.4 Real-world data sets
	4.5 Methodology
	4.6 Results on real data

	5 Conclusion

	Acknowledgments
	References
	A Supplementary materials
	A.1 Synthetic data
	A.2 Synthetic data parameter tuning
	A.3 Real-world datasets
	A.4 Supplementary Algorithms and Figures

