
GUDIE: a flexible, user-defined method to
extract subgraphs of interest from large graphs

Maria Inês Silva, David Aparício, Beatriz Malveiro, João Tiago Ascensão, and
Pedro Bizarro

Feedzai
{maria.silva, david.aparicio, beatriz.malveiro, joao.ascensao,

pedro.bizarro}@feedzai.com

Abstract. Large, dense, small-world networks often emerge from social
phenomena, including financial networks, social media, or epidemiology.
As networks grow in importance, it is often necessary to partition them
into meaningful units of analysis. In this work, we propose GUDIE, a
message-passing algorithm that extracts relevant context around seed
nodes based on user-defined criteria. We design GUDIE for rich, labeled
graphs, and expansions consider node and edge attributes. Preliminary
results indicate that GUDIE expands to insightful areas while avoiding
unimportant connections. The resulting subgraphs contain the relevant
context for a seed node and can accelerate and extend analysis capabilities
in finance and other critical networks.

Keywords: graph expansions · message passing algorithms · banking
networks · fraud detection · anti-money laundering

1 Introduction
Complex networks appear in many real-life systems, such as social, biological, or
technological systems. Recurrent examples are small-world networks [1] charac-
terized by small diameters and few links of separation between any two nodes,
which leads to efficient exchanges at both local and global levels [2]. Banking
networks, for example, are vast but have small diameters due to the existence
of high-degree nodes, such as large merchants. These supernodes resemble su-
perspreaders in epidemiology [3, 4, 5] or social media [6]. Even though being so
pervasive, understanding these networks is difficult since they are typically large
and exhibit complex collective behaviors.

When exploring such networks, it is common to use dedicated interfaces such
as node-link diagrams [7]. Visualization platforms often follow the “Search, Show
Context, Expand on Demand” paradigm [8] and require users to interact with
the graph and expand nodes on-demand to uncover additional context. However,
it is not always clear which expansions lead to the most relevant context.

Direct connections provide immediate context and are typically relevant.
Some indirect connections may also be informative, albeit resulting in more
complex subgraphs. In particular, expanding a few hops in large, small-diameter

ar
X

iv
:2

10
8.

09
20

0v
1

 [
cs

.S
I]

 2
0

A
ug

 2
02

1

2 M. Silva et al.

networks can yield visually overwhelming graphs that contain mostly irrelevant
connections.

To address the problem of generating relevant expansions, we propose GUDIE
(Graph User-Defined Interest Expansions). This novel algorithm that extracts
relevant context around a set of nodes in highly connected networks based on
user-defined criteria. We devise GUDIE to assist financial crime investigations
in banking networks. Nonetheless, its reliance upon user-defined criteria makes
it adaptable to different datasets and use-cases. GUDIE is a message-passing
algorithm, which makes it parallel by design and scalable to large networks.

The remaining of this paper is structured as follows. Section 2 details GUDIE.
Section 3 contains preliminary results. We review related work in Section 4.
Finally, Section 5 summarizes conclusions and future directions.

2 Method

GUDIE1 is a message-passing algorithm that returns the most interesting expan-
sion for each node in a list of nodes, based on user-defined interest. In this section,
we discuss user-defined interest (Section 2.1), desirable properties (Section 2.2),
and provide an overview of our method (Section 2.3).

2.1 User-Defined Interest

Interest is data- and use-case specific. Hence, considering user-defined criteria
for the expansions is an integral part of GUDIE, and it ensures flexibility and
adaptability to different networks.

GUDIE’s expansions rely upon user-defined interest functions and the struc-
tural properties of the graph. The user provides two types of interest functions:
node or vertex interest (VUDIE2) and edge or link interest (LUDIE3). Both in-
terest functions receive information about the graph and provide a score between
0 and 1. Higher scores stand for higher interest.

As an example, let us consider banking networks. Relevant node information
may include node type (e.g., card, device, IP), labels (e.g., past alerts or suspicious
activity), recent activity (e.g., active or dormant entities), and topological features
(e.g., degree, clustering coefficient). Past labels can also influence edge interest
(e.g., fraud labels) alongside edge weight (e.g., transaction amount) and recency.
Finally, edge interest can depend on its relationship with nodes, as similarity
with other edges connected to the same entities.

2.2 Desirable Properties

We design GUDIE to satisfy specific properties. Mainly, we aim to attribute higher
interest to (P1) nodes that are closer to the seed, (P2) nodes in high-interest
1 Acronym for Graph User-Defined Interest Expansions.
2 Acronym for Vertex User-Defined Interest Expansions.
3 Acronym for Link User-Defined Interest Expansions.

GUDIE: extracting interesting subgraphs in large graphs 3

areas, and (P3) nodes connecting the seed to high-interest areas. Moreover, we
want to ensure that the number of connections alone does not automatically
drive interest. Thus (P4) node interest does not necessarily increase with the
node degree. Alternatively, the user-defined node interest function can consider
degree centrality when desirable.

2.3 Method Overview

GUDIE (Algorithm 1) consists of four main steps.4

Algorithm 1 GUDIE

Input: Graph G; list of seed nodes S ⊆ V (G); node interest function
VUDIE : V (G)→ [0, 1]; edge interest function LUDIE : E(G)→ [0, 1]; number of
interest propagation hops h;interest propagation function φ; interest aggregation
function γ; decay function θ; interest threshold k ∈ [0, 1].
Output: GraphUnits S (list of subgraphs), one for each seed.

1: IV , IE ← Initialize(G,VUDIE,LUDIE)
2: Ih

V ← InterestPropagation(G, IV , IE , h, φ, γ)
3: G ← SeedsExpansion(G, Ih

V , S, θ, k)
4: S ← ObtainGraphUnits(G)

Initialization. Node and edge interest scores, IV and IE , respectively, are com-
puted according to the interest functions VUDIE and LUDIE. At this point,
every node and edge in G has an interest score.

Interest Propagation. GUDIE propagates the interest through the network. Here,
nodes message their neighbors their interest score. The interest propagation
process runs for h hops and considers node interest, IV , and edge interest, IE .
According to the interest propagation function, nodes split their node interest
among their neighbors, φ, and update their interest according to the interest
aggregation function, γ. After this step, we have a new propagated interest score
IhV .

Seed Expansion. GUDIE runs the expansions for each seed s ∈ S. The seed
expansion process runs on top of G and the propagated node interest IhV . The
expansion starts by computing the minimum allowed interest for the seed using
the interest expansion tolerance, k. During expansion, distant nodes from the
seed are penalized according to the distance decay function θ. At the end of the
seed expansion process, each node contains the expansions traversing them. We
store this information in G.
4 Appendix A further details the GUDIE method, including its inputs, design choices
and implementation.

4 M. Silva et al.

Obtain GraphUnits. GUDIE uses a map-reduce operator to obtain the subgraphs.

3 Preliminary Results

3.1 Prototypical Examples

This section showcases five examples that mimic known patterns in banking
networks. We analyze the expansions obtained with GUDIE.

We consider banking networks with four entities types corresponding to four
different node types: customers, merchants, devices, and IP addresses. Two nodes
are connected if there is at least one shared financial transaction. Edges have three
attributes: the transaction label (i.e., fraudulent or legitimate), the transaction
timestamp, and the transaction amount.

In all cases, we use customer C1 as the seed node. We use a constant interest
function for nodes, I(Ni) = 1.0, and an edge interest function that depends on
the fraud rate and the time-weighted amount of the transactions.5

Uninteresting edges Consider two transactions made by customer C1 : one
legitimate and one high amount fraudulent payment. Considering how the interest
functions were defined, we expect GUDIE to expand only to the entities involved
in the high-amount fraudulent transaction, as illustrated in Figure 1.

$1

$1

1$$1

C1
$100M

$1
00

M

$100M

C1

IP2

D2D1

IP1

M2M1

Expected
GraphUnit

D1C1 M1

D2C1 M2

IP1

IP2

$1

$100M

No

Yes

IPMerchantCustomer Device Fraud?Amount

Fig. 1: Ignoring uninteresting edges (Example 1).

In the initialization step, the interest given to the legitimate and low-amount
edges is low, while the interest given to the fraudulent and high-amount edges
is high (Figure 2). GUDIE propagates the interest and, when the expansion is
complete, the GraphUnit contains only the customer C1 and the entities involved
in the high-amount fraudulent transaction.

5 Refer to Appendix B for full configurations.

GUDIE: extracting interesting subgraphs in large graphs 5

C1

≈0

≈0

≈0

1

1

1

C1

IP211

11

111D1

M2M1

Initialized
Interest

Step 1: Initialization

Step 4: Obtaining GraphUnit

C1

≈0

≈0

≈0

1

1

1

C1

IP211

11

111 D2D1

IP1

M2M1

Initialized
Interest

Step 2: Interest Propagation

$1

$1

1$

C1

$100M

$1
00

M

$100M

IP2
Propagated

Interest
0.55

D2
0.55

D1
0.03

IP1
0.03

M2
0.55

M1
0.03

$1

$1

1$

$100M

$1
00

M

$100M

IP2
0.55

 { [C1, IP1] }

 { [C1, D2] }

D2
0.55

IP1
0.03

M2
0.55

M1
0.03

Number of hops h = 5

Step 3: Seed Expansion
Minimum Interest =C1

5 I × 0.7 0.27

 { }

$1

$1

1$$1

$100M

$1
00

M

$100M

C1

IP2

D2D1

IP1

0.39

C1
0.39

in GraphUnitnot in GraphUnit

V
5 I

D1
0.03
 { }

 { [C1, IP1] } { }

M2M1

Interest threshold k = 0.7

Fig. 2: Steps to obtain the GraphUnit for Example 1.

Interesting indirect connections The second example covers a case where the
customer C1 makes a legitimate purchase on merchant M1. However, fraudulent
transactions were previously made by customer C2 on this very same merchant,
as illustrated in Figure 3. This example tests whether GUDIE is capable of
connecting C1 to fraudulent activity beyond its direct connections.

As GUDIE attributes a high-interest score to the connected merchant, the
expansion reaches the fraudulent subgraph. The resulting GraphUnit matches
our expectations and shows that GUDIE is capable of expanding to interesting
indirect neighbors.

$500

$500

$5
00

M1

C1
0.14

IP1
0.12

$1K

$1
K

$1K

0.52

D1C1 M1

D2C2 M1

IP1

IP2

$500

$1K

IPMerchantCustomer Device Fraud?Amount

No

Yes

Propagated
Interest

1

1

1

0.29

0.29

0.
29

11

1 1 1

1 1

C2

D1
0.93

0.87

D1
0.12

IP2
0.93

Expected
GraphUnit

Interest Initialization Minimum Interest

(0.14)
C1
5 I k

(0.7)

× = 0.10

V
5 I

in GraphUnitnot in GraphUnit

Fig. 3: Interesting indirect nodes (Example 2).

6 M. Silva et al.

Irrelevant supernodes The third example consists of a customer C1 that
made a legitimate purchase on a large merchant with a low fraud rate of 10%, as
illustrated in Figure 4. Due to the size of the merchant and its low fraud rate,
transactions made by other customers are not a helpful context for investigators.

As expected, GUDIE attributes a low-interest score to the merchant. Hence,
the expansion does not pursue this path: the final GraphUnit excludes the
connections of the merchant, including the one associated with a fraudulent
transaction. This example demonstrates that GUDIE does not show connections
to uninteresting high-degree nodes.

$5
00

$500

$500

$500
…

$500$500

$500

$5
00 Amazon

C1
0.20

C2
…

C10
…

D10
0.22

IP10
0.22

0.08

Expected
GraphUnit

C3
…

C4
…

C5
…

IP1 $500 No
10%
Fraud

YesIP9

IP10

$500

$500 No

C2 Amazon

C10 Amazon

C1 Amazon

D1

D9

D10

IPMerchantCustomer Device Fraud?Amount

0.6

0.5

0.5

0.
5

1

1

1

≈0
≈0

≈0

≈0

1

...

Interest Initialization Minimum Interest

(0.20)
C1
5 I k

(0.7)

× = 0.14

in GraphUnitnot in GraphUnit

… ……… … …

Fig. 4: Irrelevant supernodes (Example 3).

Relevant supernodes Let us consider a variation of the previous case with a
fraud rate of 40%. Given this higher fraud rate, we expect GUDIE to include the
merchant in the GraphUnit.

Accordingly, we see in Figure 5 that GUDIE attributes a high-interest score
to the fraudulent merchant and expands to it. However, the interest is not large
enough to continue the expansion to other customers connected to the merchant.
Thus, GUDIE can expand to supernodes of high interest.

0.6

0.5

0.5

0.
5

1

1

1

0.6

≈0

≈00.
6

1

...

$5
00

$500

$500

$500
…

$500$500

$500

$5
00

Shady Inc

C1
0.22

C2
…

C3
…

C4
…

C5
…

C10
…

D10
0.23

IP10
0.23

0.17

Expected
GraphUnitIP1

… …
$500

… 40%
Fraud

YesIP9

IP10

$500

$500 No

C2 Shady Inc

Shady Inc

Shady Inc

… …

C10

C1

D1
…

D9

D10

IPMerchantCustomer Device Fraud?Amount

Yes

Interest Initialization Minimum Interest

(0.22)
C1
5 I k

(0.7)

× = 0.15

in GraphUnitnot in GraphUnit

Fig. 5: Relevant supernodes (Example 4).

GUDIE: extracting interesting subgraphs in large graphs 7

Interesting areas through uninteresting edges Finally, we test whether
GUDIE can reach high-interest areas connected to the seed node by low-interest
nodes. Figure 6 illustrates this scenario where none of C1 ’s direct connections
are interesting, as they represent low amount legitimate purchases. However, the
merchant connected to C1 is connected to a fraudulent customer C2.

As expected, GUDIE increases the merchant’s interest and reduces the interest
of the other direct connections. Accordingly, the expansion reaches the fraudulent
customer C2, allowing GUDIE to expand to a distant region of high interest.

0.14

0.
14

1

1

1

11 1 1

1

10.14 0.5

0.
72

0.76

0.83

1

$500 $2K
$500

$5
00 M1

C1
0.07

D10
0.06

IP10
0.06

0.19

M2
0.45

M4
0.51

Expected
GraphUnit

$1.2K

$1
K

$1.5K

$2000

$1000

$1200

$1500

Yes

Yes

Yes

C2 M1

M3

M4

C2 M2

C2

C2

IP2 $500 No

No

M1C1 D2

IPMerchantCustomer Device Fraud?Amount

M3
0.48

in GraphUnitnot in GraphUnit

Interest Initialization Minimum Interest

(0.07)
C1
5 I k

(0.7)

× = 0.05

Fig. 6: Interesting areas through uninteresting edges (Example 5).

3.2 Usability

This section provides a usability analysis of GUDIE. Although inspired by
Feedzai’s Visual Insights platform, Genome, we believe it applies to other domains
where human investigators analyze large networks, such as financial networks,
social media, or epidemics, for example.

In financial investigations, analysts use dedicated interfaces6 to review alerted
cases. Usually, in less than five minutes, analysts must review the data, reason
about potential fraud scenarios, and decide whether the case is suspicious. Inter-
active graph diagrams provide a quick visual overview of the case by immediately
showing relevant connections of its entities.

However, without GUDIE, the initial graph presented to the analyst consists
of only the entities present in the case. This information is often insufficient to
make a decision. In order to uncover the relevant context, the analyst performs
the following tasks: (T1) expand7 interesting nodes, (T2) remove irrelevant new
nodes, (T3) repeat T1-T2 until there is enough context.

This manual trial-and-error exploratory analysis is time-consuming and far
from trivial, potentially compromising the target review time. GUDIE removes the
need to perform tasks (T1–T3) by automatically showing the relevant GraphUnit.
Consequently, we expect GUDIE to enable faster decision-making.

Furthermore, we envision GUDIE assisting complex linked analysis by en-
abling more concise expansions. Expanding an interesting node (T1) could yield
6 Refer to Appendix B.2 for an illustrative example of this user interface.
7 An expansion operation adds connections (nodes and edges) to the view.

8 M. Silva et al.

its GraphUnits, encapsulating its relevant context while automatically hiding
uninteresting connections (T2).

4 Related work

Techniques to deal with large networks include sampling [9], network partition-
ing – namely local clustering [10] and community detection [11], and studying
diffusion and influence [12]. GUDIE aims to extracts the relevant context around
a node. We believe our method is especially suited for large, dense, small-word
networks. Evidence on many self-organizing social systems suggests densification
and shrinking network diameters over time [13].

Local graph clustering shares similarities to our problem since its goal is to
identify a cluster near a given node [10]. A local cluster is a group of nodes around
a seed node with high connectivity between local nodes and low connectivity to
nodes outside the cluster.

Connectivity is commonly defined in terms of edge conductance [14, 15].
Recent work has expanded the concept of connectivity to consider high-order
structures, which relate more closely to our work. Motif conductance typically
encodes high-order structures by measuring the conservation of specific subgraph
patterns, such as triangles, cycles, or stars, inside the cluster [16, 17, 10].

Even though motif conductance is more flexible than edge conductance,
current work concerns a single subgraph. Thus it does not work when it is
inadequate to represent interest as a single subgraph. On the other hand, GUDIE
is more flexible since it allows for user-defined interest functions.

Additionally, because these methods optimize motif conductance only, they
do not penalize nodes distant from the seed. GUDIE takes into account distance
through a decay function.

5 Conclusion

We propose GUDIE to extract node context from large, highly connected networks.
To the best of our knowledge, GUDIE is the first method that employs user-defined
criteria to retrieve the relevant context around a seed node.

We present preliminary results. We include five examples to showcase desirable
properties. In all examples, GUDIE extracts the desired subgraph. We also put
forward usability considerations. We designed GUDIE to be highly adaptable
to other datasets and use-cases through user-defined interest. Although the
experiments reflect banking networks and financial crime investigations, we
believe the insights apply to other network types.

Shortly we plan to test GUDIE on real-world banking networks. Mainly, we
aim to evaluate GUDIE’s scalability and conduct user tests to assess its impact
on the speed and accuracy of financial crime investigations.

Moreover, we believe there is an opportunity to test GUDIE on other domains,
particularly in the context of other large, dense, small-world networks.

Bibliography

[1] Stanley Milgram. The small world problem. Psychology today, 2(1):60–67,
1967.

[2] Vito Latora and Massimo Marchiori. Efficient behavior of small-world
networks. Phys. Rev. Lett., 87:198701, Oct 2001.

[3] Richard A Stein. Super-spreaders in infectious diseases. International
Journal of Infectious Diseases, 15(8):e510–e513, 2011.

[4] Sara H Paull, Sejin Song, Katherine M McClure, Loren C Sackett, A Marm
Kilpatrick, and Pieter TJ Johnson. From superspreaders to disease hotspots:
linking transmission across hosts and space. Frontiers in Ecology and the
Environment, 10(2):75–82, 2012.

[5] Serina Chang, Emma Pierson, Pang Wei Koh, Jaline Gerardin, Beth Redbird,
David Grusky, and Jure Leskovec. Mobility network models of covid-19
explain inequities and inform reopening. Nature, pages 1–6, 2020.

[6] Sen Pei, Lev Muchnik, José S Andrade Jr, Zhiming Zheng, and Hernán A
Makse. Searching for superspreaders of information in real-world social
media. Scientific reports, 4(1):1–12, 2014.

[7] René Keller, Claudia M. Eckert, and P. John Clarkson. Matrices or node-link
diagrams: Which visual representation is better for visualising connectivity
models? Information Visualization, 5(1):62–76, 2006.

[8] F. van Ham and A. Perer. “Search, Show Context, Expand on Demand”:
Supporting Large Graph Exploration with Degree-of-Interest. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):953–960, 2009.

[9] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 631–636, 2006.

[10] Dongqi Fu, Dawei Zhou, and Jingrui He. Local motif clustering on time-
evolving graphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’20, page 390–400,
New York, NY, USA, 2020. Association for Computing Machinery.

[11] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.
Community structure in large networks: Natural cluster sizes and the absence
of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[12] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring
networks of diffusion and influence. ACM Transactions on Knowledge
Discovery from Data (TKDD), 5(4):1–37, 2012.

[13] Jurij Leskovec. Dynamics of large networks. PhD thesis, Carnegie Mellon
University, School of Computer Science, Machine Learning . . . , 2008.

[14] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using
pagerank vectors. In 2006 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’06), pages 475–486, 2006.

[15] Daniel A. Spielman and Shang-Hua Teng. A Local Clustering Algorithm for
Massive Graphs and Its Application to Nearly Linear Time Graph Parti-

10 M. Silva et al.

tioning. SIAM Journal on Computing, 42(1):1–26, January 2013. Publisher:
Society for Industrial and Applied Mathematics.

[16] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local
higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
’17, page 555–564, New York, NY, USA, 2017. Association for Computing
Machinery.

[17] D. Zhou, J. He, H. Davulcu, and R. Maciejewski. Motif-preserving dynamic
local graph cut. In 2018 IEEE International Conference on Big Data (Big
Data), pages 1156–1161, 2018.

A Supplemental Material – GUDIE

A.1 User Inputs

Below, we detail GUDIE’s user parameters, besides the interest functions, VUDIE
and LUDIE (defined in Section 2).

Interest propagation hops (h) This parameter dictates how many hops away
two nodes can be in order for them to influence each other’s interest. In essence,
we want to enable the user to control how long-reaching the interest propagation
should be. For instance, in a connected graph, h = diameter(G) guarantees that
all nodes influence each other’s interest at least a small amount proportional to
their distance.

Interest threshold (k) Controls the seed expansion process (i.e., when to stop).
The threshold is expressed as a relative value of the seed’s original interest. For
instance, if k = 0.8, GUDIE will ignore expansions that are 20% less interesting
than the seed’s initial interest. In the extremes, if k = 1, expansions can only
go to nodes at least as interest as the seed, s, and if k = 0 all expansions are
allowed.

Interest aggregation function (γ) This function specifies how a node com-
bines its interest, obtained from the previous iteration, with the interest received
from its neighbors in the current iteration.

A possibility for γ follows in Equation 1:

γ1(Ih−1
n ,Mn) = Ih−1

n

2 +
∑
in,m∈Mn

in,m

2|Mn|
(1)

γ1 gives equal weight to the previous node interest, Ih−1
n , and to the average

of the messages received in the current iteration, Mn.
It is important to note that since γ1 is first aggregating the messages received,

it does not add more interest to nodes just more having more connections. Recall
that this was one of the desired properties of the method.

GUDIE: extracting interesting subgraphs in large graphs 11

Other functions might give different weight to Ih−1
n and use different aggre-

gations of the messages Mn, such as the max or min, for example. However, if
one were to use a sum aggregation instead of a mean aggregation, super-nodes
would receive more interest just for having more neighbors.

Decay function (θ) Specifies the weight decay of a node’s interest relative to
its distance to the seed.

Equations 2 and 3 introduce two possibilities that progressively decrease the
interest of more distant nodes follow:

θ1(L) = 1− |L|−1 (2)

Equation 3 decreases faster than Equation 2, which might be more or less
adequate depending on the data, the use-case, and the desired expansions (more
or less local).

θ2(L) = 1− e1−|L| (3)

A.2 Other Parameters

Interest propagation function (φ) Equation 4 contains the interest propa-
gation function. As it is defined, φ has two properties that make it well suited
for interest propagation.

φ(n,m) = In × In,m (4)

Because the function is monotonic increasing on the nodes interest In, nodes
close to high-interest areas receive messages with high interest values from their
neighbors and, therefore, have high propagated interests.

Moreover, because the function is monotonic increasing on the edge interest
score In,m, messages received via low-interest interest edges are penalized and
vice-versa. Thus, a node connected to a high-interest area via a low-interest edge
will have a lower propagated interest than a node connected to the same area via
an high-interest node.

A.3 Initialization

Algorithm 2 describes GUDIE’s initialization. GUDIE uses VUDIE (lines 2–3) and
LUDIE (lines 3-4) to assign an interest to each node and edge in G, respectively.
At the end of the process, GUDIE outputs the node interest for all nodes in G,
IV , and the edge interest for all edges in G, IE . The values can be appended to
the graph to build a new weighted graph or used as a separate data-structure
(e.g., a dictionary mapping nodes and edges to their respective interest).

12 M. Silva et al.

Algorithm 2 GUDIE initialization.

Input: Graph G; node interest function VUDIE : V (G)→ [0, 1]; edge interest function
LUDIE : E(G)→ [0, 1].
Output: Nodes’ interest IV and edges’ interest IE .

1: function Initialize(G,VUDIE,LUDIE)
2: for all n ∈ V (G) do
3: In = VUDIE(n)
4: for all (n,m) ∈ E(G) do
5: In,m = LUDIE(n,m)
6: return IV , IE

A.4 Interest propagation
The interest propagation step is detailed in Algorithm 3. Interest propagation
takes as input the graph G, alongside initial node and edge interest, IV and IE ,
h, φ, and γ, and computes the propagated interest, IhV .

Algorithm 3 GUDIE interest propagation.

Input: Graph G; nodes’ interest IV ; edges’ interest IE ; interest propagation hops h;
interest aggregation function γ.
Output: Updated nodes interest Ih

V (after interest propagation).

1: function InterestProp(G, IV , IE , h, φ, γ)
2: I0

V ← IV

3: for h hops do
4: for all n ∈ V (G) do
5: Mn ← ∅
6: for all (n,m) ∈ E(G) do
7: in,m ← φ(n,m)
8: Mn· append(in,m)
9: for all n ∈ V (G) do
10: Ih

n ← γ(Ih−1
n ,Mn)

11: return Ih
V

First, GUDIE sets the initial interest I0
V as the nodes’ initial interest, IV

(line 2). Then, there are h iterations of interest propagation (line 3–8). At each
iteration, we initialize empty each node’s set of received messages, Mn (lines
4–5). Then, all nodes send messages to their neighbors through their edges (lines
6–8). Messages contains the interest in,m, obtained using the interest propagation
function, φ (line 7).

After a node m receives a message from neighbor n, it updates its pool of
received messages to contain in,m (line 8). After all messages for iteration h

GUDIE: extracting interesting subgraphs in large graphs 13

have been exchanged, each node updates its node interest using the aggregation
function γ (lines 9–10).

A.5 Seed expansion

The seed expansion step takes as input the graph G, the propagated node
interest IhV , the list of seed nodes S, and parameters θ and k to obtain the list
of expansions, G, traversing each node n ∈ V (G) starting from one of the seeds
s ∈ S. Algorithm 4 describes the seed expansion process.

Algorithm 4 GUDIE seed expansion.

Input: Graph G; nodes interest Ih
V ; list of seed nodes S ⊆ V (G); decay function θ;

interest threshold k ∈ [0, 1].
Output: Expansions G traversing each node n ∈ V (G).

1: function SeedsExpansion(G, Ih
V , S, θ, k)

2: U ← ∅
3: for all n ∈ V (G) do
4: Gn ← ∅
5: for all s ∈ S do
6: δ ← Ih

s × k
7: P ← [s]
8: gs ← Expansion(δ, P)
9: Gs ← {gs}
10: U ← U ∪ {s}
11: while U is not empty do
12: U ′ ← ∅
13: for all n ∈ U do
14: for all (n,m) ∈ E(G) do
15: for all gn ∈ Gn do
16: if m 6∈ gn. path and
17: (1− θ(gn· path))× Ih

m ≥ gn· minInterest then
18: gm ←Expansion(gn· minInterest, gn· path ∪{m})
19: if gm 6∈ GM then
20: Gm ← Gm ∪ {gm}
21: U ′ ← U ′ ∪ {m}
22: U ← U ′

23: return G

Initialization The first step is to initialize the relevant variables.
The set of updated nodes, U , and the expansions traversing each node, Gn,

are set to empty (lines 1–4).

14 M. Silva et al.

The minimum interest, δ, is derived from the seed interest, Ihs , and the
tolerance, k (line 6). The path, P , is initialized with the single seed, s (line 7).
We create an expansion, gs, from δ and P (line 8) and add it to the list of all
expansions going through s, G∫ (line 9).

Finally, we add s to the set of updated nodes U (line 10).

Expansion Iterative expansions run until no nodes are updated with new
expansions in the previous iteration (lines 11-22).

In each iteration, all nodes that received updates in the previous iteration
check if there are valid extensions going through their neighbors (lines 13-21).

If the conditions are satisfied, node m creates a new expansion, gm, containing
the minimum interest allowed by the seed, (gn.minInterest), and updates the
path traversed, (gn.path), augmented by {m}.

If the expansion gm was already found in previous iterations, it is discarded
(line 19). If it is new, gm is added to the list of traversed paths, Gm (line 20), and
the node m is added to the list of nodes that have been updated in the current
iteration, U ′ (line 21).

At the end of each iteration, the list of nodes to be explored is updated (line
22) and, if the list is not empty, the process continues (lines 11-22).

A.6 Obtain GraphUnits

Obtaining GraphUnits is done using a map-reduce operation, described in Algo-
rithm 5 and Figure 7.

Algorithm 5 GUDIE map-reduce operation to obtain GraphUnits.

The mapper emits an intermediate seed-expansion pair for each node in the graph. The
reducer obtains the GraphUnit for each seed.

1: function ObtainGraphUnits(G)
2: procedure map(Gn)
3: for all gn ∈ Gn do
4: L← gn· path
5: s← L[0]
6: emit(seed s, expansion L)
7: procedure reduce(s, L = [L1, L2, ...])
8: S = ∅
9: for all L ∈ L do
10: S ← S ∪ L
11: emit(s, S)

The mappers traverse their corresponding list of expansions, Gn (lines 2-6),
and, for each one of them, gn (line 3), obtain their path, L (line 4), seed, s (line
5), and emit the seed-expansion pair (line 6).

GUDIE: extracting interesting subgraphs in large graphs 15

Thus, at the end of the mapping process, all pairs of seed-expansion have
been produced.

Finally, for each seed s, the reduce operator combines the resulting paths and
obtains the GraphUnit.

4

6

5

2

3

1

7
4

6

5

2

3

1

1

7

7

Seeds

Original Graph Subgraph Expansions Map Reduce (FraudUnits)

 { L = [1] }

 { L = [7] }

 { L = [1, 2],
 { L = [7, 5, 2] }

 { L = [1],
 { L = [1, 2],
 { L = [1, 2, 3],
 { L = [1, 4, 6] }

 { L = [7, 5, 2],
 { L = [7, 4],
 { L = [7, 4, 6],
 { L = [7] }

 { L = [1, 4, 6],
 { L = [7, 4, 6] }

 { L = [1, 4],
 { L = [7, 4] }

 { L = [1, 2, 3] }

 { L = [7, 5] }
4

6

5 2

7

4

6

2 3

1

Fig. 7: Map-reduce operator to obtain GraphUnits.

B Supplemental Material – Preliminary Experiments

We initialize GUDIE with the following parameters:

– Number of hops, h = 5
– Interest threshold, k = 0.7
– Aggregation function, γ: Equation 1
– Decay function, θ: Equation 3

B.1 Edge Interest (LUDIE)

Let us define Ωt as the most recent timestamp in the dataset (in seconds) and
Ei,j as an edge representing transactions between nodes i and j.

For each transaction ei,j ∈ Ei,j , we define its weighted amount as

w_amount(ei,j) = amount(ei,j) ∗ e−∆t

where

∆t = (Ωt − timestamp(ei,j))/one_week_in_seconds

From here, we define the time-weighted amount of Ei,j as follows

tw_amount(Ei,j) =
∑
ei,j

w_amount(ei,j)

16 M. Silva et al.

Additionally, for each Ei,j , let fraud_rate(Ei,j) be the ratio of fraudulent
transactions between nodes i and j. Assuming that Ωmaxt is the maximum
time-weighted amount in the graph, we define the edge interest function as

I(Ei,j) = tw_amount(Ei,j)
2Ωmaxt

+ fraud_rate(Ei,j)
2

B.2 Usability

Consider the following interface to review suspicious financial crime cases illus-
trated in figure 8. The interface comprises a single page that displays the details
of the alerted case and associated transactions, alongside customer information
and the interactive graph diagram. This tool is optimized so that the analyst can
review the case accurately and fast.

Case Details

Customer Information

Transaction Details

Fig. 8: Illustration of graph placement in the interface used by fraud analysts to
review alerted cases.

	GUDIE: a flexible, user-defined method to extract subgraphs of interest from large graphs

