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Abstract
The unparalleled ability of machine learning al-
gorithms to learn patterns from data also enables
them to incorporate biases embedded within. A
biased model can then make decisions that dispro-
portionately harm certain groups in society. Much
work has been devoted to measuring unfairness
in static ML environments, but not in dynamic,
performative prediction ones, in which most real-
world use cases operate. In the latter, the predic-
tive model itself plays a pivotal role in shaping the
distribution of the data. However, little attention
has been heeded to relating unfairness to these
interactions. Thus, to further the understanding
of unfairness in these settings, we propose a tax-
onomy to characterize bias in the data, and study
cases where it is shaped by model behaviour. Us-
ing a real-world account opening fraud detection
case study as an example, we study the dangers to
both performance and fairness of two typical bi-
ases in performative prediction: distribution shifts,
and the problem of selective labels.

1. Introduction
With the increasing prominence of machine learning in high-
stakes decision-making processes, its potential to exacerbate
existing social inequities has been a reason of growing con-
cern (Howard & Borenstein, 2018; Angwin et al., 2016;
O’Neil, 2016). The goal of building systems that incorpo-
rate these concerns has given rise to the field of fair ML,
which has grown rapidly in recent years (Mehrabi et al.,
2021).

Fair ML research has focused primarily on devising ways
to measure unfairness (Barocas et al., 2017) and to miti-
gate it in static algorithmic predictive tasks (Mehrabi et al.,
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2021; Caton & Haas, 2020). However, the vast majority
of real-world use cases operate in dynamic environments,
which feature complex, and unpredictable feedback loops
that may exacerbate existing biases in the data and models.
In such environments, model behaviour itself shapes the
distribution of the data, so a deep understanding of data
bias and its interaction with the ML model is required to
uncover the causes of unfairness. That said, accounting
for some notable exceptions (Fogliato et al., 2020; Wang
et al., 2021; Blanzeisky & Cunningham, 2021; Jabbari et al.,
2020; Akpinar et al., 2022) little attention has been heeded
to relating unfairness to concrete bias patterns in the data.

To this end, we propose a domain-agnostic taxonomy to
characterize data bias between a protected attribute, other
features, and the target variable. It may be applied in dy-
namic environments, where bias during training can lie in
stark contrast with that found in production. In particular,
we use the taxonomy to model performative prediction set-
tings, where data bias is induced by the predictive model
itself. As a running example, we take an account open-
ing fraud detection case study, which features two typical
performative prediction bias phenomena: first, distribution
shifts from fraudsters adapting to escape the fraud detection
system; second, noisy labels arising from the selective la-
bels problem, where the AI system determines the observed
labels. We show how both issues, if left unaddressed, have
detrimental, unpredictable, and sometimes unidentifiable
consequences on fairness and performance.

2. Background & Related Work
Perdomo et al. (2020) define predictions as performative if
they “influence the outcome they aim to predict”. This in-
fluence usually reflects itself in distribution shifts over time,
which, if left unaddressed, lead to degradation in predictive
performance. In a lending scenario, Mishler & Dalmasso
(2022) study the effects on fairness metrics of a classifier
whose prediction changes the lending approval probabil-
ity for a protected group. Estornell et al. (2021) point out
the negative impact that adaptive agents have on the effec-
tiveness of classifiers trained to be fair. Conversely, our
work focuses on group-wise feature distribution shifts due
to fraudsters adapting to the model over time — a strategic
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classification (Dalvi et al., 2004) setting, which is a subset
of performative prediction.

The selective label problem arises when the system under
analysis determines the sample of observed labels (Baro-
cas et al., 2019). For example, in fraud detection, rejecting
an account opening based on the belief that it is fraudu-
lent, implies that we will never observe its true label (the
account never materializes). Here, the system fully deter-
mines the outcome of that observation, making it performa-
tive. Assuming the labels of these instances to be truthful
causes a bias in the evaluation of performance and fairness
of classification tasks, since most metrics — and particu-
larly those one which we focus here (e.g.: FPR) — rely on
accurate ground-truth labels. There is some work discussing
the detrimental effects of noisy labels on algorithmic fair-
ness (Fogliato et al., 2020; Jiang & Nachum, 2020; Lamy
et al., 2019; Wang et al., 2021; Liao & Naghizadeh, 2022).
The work of Dai & Brown (2020) is particularly pertinent,
as it discusses the impact of label noise and shift on the
reliability of fairness-aware algorithms. Our paper extends
that work to a setting where label bias is induced by the
classifier itself.

3. Bias Taxonomy
Throughout this work, we refer to the features of a dataset
as X , the class label as Y , and the protected attribute as
Z. The following definitions use the inequality sign ( 6=) to
mean a statistically significant difference.

Despite a multitude of definitions, there is still little consen-
sus on how to characterize data bias (Mehrabi et al., 2021).
In this paper, we propose a broad definition: there is bias
in the data with respect to the protected attribute, whenever
the random variables Y and X are sufficiently statistically
dependent on Z. This does not mean a classifier trained on
such data would be unfair, but rather that there is potential
for it to be. In Section 4, we will explore how these biases
may be induced by model behaviour over time.

Base Bias Condition

P [X,Y ] 6= P [X,Y |Z]. (1)

To satisfy this, Z must be statistically related to either X ,
Y , or both. The following biases imply this condition.

Group-wise Class-conditional Distribution Bias

P [X|Y ] 6= P [X|Y,Z]. (2)

Consider an example in account opening fraud in online
banking. Assume that the fraud detection algorithm receives
a feature which represents how likely the email-address is
to be fake (X) and the client’s reported age (Z) as inputs.
In account opening fraud, fraudsters tend to impersonate

Figure 1. Group-wise Class-conditional Distribution Bias. There
is clear class separability for the majority group (middle), i.e.,
we can distinguish the fraud label using the two features. At
the same time, there is virtually no separability for the minority
group (right), as positive and negative samples overlap on this
feature space. However, this is not discernible when looking at the
marginal distribution for Y, x1, and x2 (left).

older people, as these have a larger line of credit to max out,
but use fake e-mail addresses to create accounts. Therefore,
the e-mail address feature will be better to identify fraud
instances for reportedly older people, potentially generating
a disparity in group-wise error-rates, even if age groups have
an equal likelihood of committing fraud in general.

Noisy Labels Bias

P ∗ [Y |X,Z] 6= P [Y |X,Z] , (3)

where P ∗ is the observed distribution and P is the true
distribution. That is, some observations belonging to a pro-
tected group have been incorrectly labeled. It is common for
one protected group to suffer more from this ailment, if the
labeling process is somehow biased. For example, women
and lower-income individuals tend to receive less accurate
cancer diagnoses than men, due to sampling differences in
medical trials (Dressel & Farid, 2018). In fraud detection,
label bias may arise due to the selective label problem.

Dynamic Bias

Let BCi be a set of bias conditions BC on a data distribution
i. Then, under dynamic bias, biases may change over time
such that,

BCtrain 6= BCdeployment. (4)

This bias is the bread and butter of dynamic environments,
as one of the main challenges in these domains is adapt-
ing to the disparities between training and deployment data.
Indeed, distribution shifts may greatly affect model perfor-
mance and fairness. In fraud detection, this can be particu-
larly important, if we consider that fraudsters are constantly
adapting to the model to avoid being caught. As such, a
trend of fraud learned during training can easily become
obsolete after deployment.
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4. Case Study
4.1. Dataset and Methodology

In this work, we use a real-world large-scale case study
of account-opening fraud (AOF). Each row in the dataset
corresponds to an application for opening a bank account,
submitted via the online portal of large retail bank. Data
was collected over an 8-month period, and contains over
500K rows. The first 6 months are used for training and the
remaining 2 months are used for testing, mimicking the pro-
cedure of a real-world production environment (we change
this in Section 4.3). As a dynamic real-world environment,
some distribution drift is expected along time, both from
naturally-occurring shifts in the behavior of legitimate cus-
tomers, as well as shifts in fraudsters’ illicit behavior as they
learn to better fool the production model.

Fraud rate (positive label prevalence) is about 1% in both
sets. This means that a naı̈ve classifier that labels all obser-
vations as not fraud achieves a test set accuracy of almost
99%. Such large class imbalance entails certain additional
challenges for learning (He & Garcia, 2009) and calls for a
specific evaluation framework. As such, performance will
be measured as true positive rate (TPR) at a threshold of
5% false positive rate (FPR). TPR measures the percentage
of detected fraud, and the FPR is limited at 5% as usually
required by banks to avoid customer attrition (each FP is
a legitimate application flagged as fraudulent, which can
cause customers to want to change banks).

We will measure fairness as the ratio between group-wise
FPR, also known as predictive equality (Corbett-Davies
et al., 2017), which measures whether the probability of a
legitimate person being flagged as fraudulent depends on
the group they belong to. This fairness measure is by no
means perfect, or enough to ensure fairness in many senses,
but given our punitive setting, it is considered appropri-
ate (Corbett-Davies et al., 2017; Saleiro et al., 2020).

4.2. Scenario 1: Adaptive Fraudsters

Fraud detection is a typical case of performative prediction
for two reasons. First, the system determines the outcome
of instances it flags as fraud: they are blocked, and so fraud
never materializes. Second, fraudsters (the target of the
predictor) actively adapt to evade the fraud detection system.
This response emerges in the form of distribution shifts,
where certain useful patterns to detect fraud in training be-
come obsolete in production (post-deployment). Extending
these concerns to fairness is straightforward, if we assume
that fraudsters may leverage certain sensitive attributes in
tandem with other features to escape detection. Indeed, one
can use our proposed data bias taxonomy to model this as a
combination of Group-wise Class-conditional Distribution
Bias and Dynamic bias.
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Figure 2. The opaque points in blue are the top 5 performing mod-
els on the setting in which the practitioner believes they are oper-
ating (one of these models would be chosen for production). The
opaque points in yellow show the same models on the performative
prediction setting on which the practitioner is actually operating,
where fraudsters adapted their behavior. The opaque points in
green are the models trained on a baseline setting, where the pro-
tected attribute is independent of X and Y. Arrows connect these
model configurations, showing how the ones selected for produc-
tion under ‘Performance Ideal’ are not the best in ‘Adaptation’.

To illustrate this, given a synthetic binary protected attribute,
we add two synthetic features x1 and x2 to our dataset,
which made it easier to detect fraud for one protected group
during the past, and is reflected in the current dataset. How-
ever, at test time, this groups’ fraudsters adapt to the system,
rendering these features useless for predicting fraud. Group
sizes and fraud rates are made equal, such that there is no
other bias in the data. We compare the performance and
fairness of 50 LighGBM models under this setting (Adap-
tation) with two other cases: one where fraudsters did not
change their behaviour (Performance Ideal), and one where
the additional features did not exist (Unbiased Baseline).

Figure 2 shows how fraudsters adapting to the system in
production had a harmful impact on both performance and
fairness1 of the top performing models. The former was to
be expected, but the latter is somewhat surprising. Given
that the additional features became uninformative in testing,
it would have been desirable that the models converged to
the performance and fairness equilibrium of the Unbiased
Baseline, which did not have x1 and x2. However, models
were “lazy”, and did not learn some of the useful fraud pat-
terns in the already-present features. Instead, they focused
mostly on x1 and x2, missing out on a chance to increase
both fairness and performance. Notice how the best models
on “Performance Ideal” were not the best, or the fairest,
after the fraudsters’ adaptation. This highlights the impor-

1the extent of this degradation could have been smaller or larger,
depending on the nature of the distribution shift.
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tance of using ML methods that are robust to distribution
shifts, especially in performative prediction environments.
One such method would have been able to improve both
fairness and performance.

4.3. Scenario 2: Selective Noisy Labels

Fraud detection suffers from an issue of selective labels,
whereby the practitioner never gets to verify the true label
of instances that are classified as fraud (predicted positives).
For example, if we block the opening of an account, we
can never confirm whether it would have been a fraudulent
instance. Still, it is common practice to re-use these pre-
dictions in the training of future models as positive label
examples. If one admits that a fraction of these observations
are false positives, models will learn on noisy labels as time
goes by. Thus, this problem can be framed as an instance
of Noisy Labels Bias across time. Contrarily, the label of
predicted negatives is eventually revealed, since these either
materialize into fraud, or are in fact not fraud.

To assess the impact of this noise on fairness, we set up an
experiment which mimics real-world fraud detection sys-
tems. We split the dataset into four temporal folds, starting
with 3 months for training, 1 month for validation and 1 for
testing. At each of four sliding-window iterations of training
and evaluating models, we advance by 1 month, concate-
nating the previous validation set onto training, using the
previous test set as validation, and moving on to a more
recent test set. Importantly, the positive labels used to train
and validate subsequent models are all the false negatives,
and predicted positives of past models. This injects the
type of label noise we mentioned above, with false positives
being noisy label positives.

Two settings of the experiment are run. In one, a global
threshold to achieve 5% FPR on the noisy validation set is
used. This is the standard for fraud detection, as used in
Scenario 1. In the other, we use group-wise thresholds — a
popular post-hoc fairness intervention (Hardt et al., 2016) —
such that predictive equality (equal group FPRs) is satisfied
on the validation set. The goal is to assess whether unfair-
ness observed in the first setting can be mitigated, or if the
selective label bias renders the intervention fruitless. If the
latter is the case, practitioners should tackle the selective
label problem before trying to guarantee fairness. At each it-
eration, the best performing LightGBM on the validation set
over 50 trials of TPE hyperparameter optimization (Bergstra
et al., 2011) is evaluated.

Figure 3 compares group-wise FPRs after thresholding
model scores in the noisy validation set, versus the FPRs the
same model obtains in production (test set), when evaluated
on real labels. Conditioned on the group, FPRs start off only
slightly different due to natural distribution shifts between
validation and test sets. However, they diverge as noise
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Figure 3. FPR over 4 time steps. Time Step 0 has no noise, but
from then on some labels are noisy. The practitioner believes they
are operating at 5% FPR (Noisy Val), but in production (Real Test),
the FPR calculated on the true labels is much higher.

levels grow, increasing three-fold between the first and last
iterations (30% v.s. 8% for the ”Old“ group, and 15% v.s.
15% for the ”Young“ group). The gap between blue and
orange lines also widens in production, meaning higher lev-
els of unfairness (about which the practitioner is unaware).
Not only do these phenomena have harmful consequences
on business, but the increased unfairness contributes to ag-
gravate existing societal inequities. Even after the fairness
intervention, the rift in group-wise FPRs shows a tendency
to widen as label noise accumulates. Thus, mitigating the
selective labels problem is of paramount importance in en-
suring that systems are in fact fair in dynamic settings. We
also tried dropping older training observations, a common
industry practice due to storage and computational limita-
tions. This seemed to attenuate the gap between perceived
and real FPR, but to widen the disparity in group FPRs.

5. Conclusion
We proposed a data bias taxonomy to characterize the

causes of unfairness in dynamic environments, where mod-
els shape the data distribution. In particular, we modelled
two scenarios of bias in performative prediction: strategic
classification, and selective noisy labels. We showed how
both issues, if left unaddressed, have detrimental, unpre-
dictable, and sometimes unidentifiable consequences on
fairness and performance. We hope this work inspires future
research on developing suitable fairness interventions for
dynamic environments.
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