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Abstract

Money laundering is a global problem that concerns legit-
imizing proceeds from serious felonies (€1.7-4 trillion an-
nually) such as drug dealing, human trafficking, or corrup-
tion. The anti-money laundering systems deployed by finan-
cial institutions typically comprise rules aligned with reg-
ulatory frameworks. Human investigators review the alerts
and report suspicious cases. Such systems suffer from high
false-positive rates, undermining their effectiveness and re-
sulting in high operational costs. We propose a machine learn-
ing triage model, which complements the rule-based sys-
tem and learns to predict the risk of an alert accurately. Our
model uses both entity-centric engineered features and at-
tributes characterizing inter-entity relations in the form of
graph-based features. We leverage time windows to construct
the dynamic graph, optimizing for time and space efficiency.
We validate our model on a real-world banking dataset and
show how the triage model can reduce the number of false
positives by 80% while detecting over 90% of true positives.
In this way, our model can significantly improve anti-money
laundering operations.

1 Introduction

Money laundering concerns the legitimization of criminal
proceeds by concealing their origin, resulting in around 2-
5% of global GDP (€1.7-4 trillion) being laundered annu-
ally (Lannoo and Parlour 2021)). Underlying crimes include
drug dealing, human trafficking, fraud, tax evasion, and cor-
ruption. Money laundering is, therefore, a severe and global
problem affecting people, economies, governments, and the
social well-being (McDowell and Novid 2001)).

For financial institutions (FIs), undetected money laun-
dering schemes can result in hefty fines and severe reputa-
tional damage. To avoid becoming a vehicle for money laun-
dering, FIs employ compliance experts investigating suspi-
cious behavior. Since it is unfeasible to review all transac-
tions, banks depend upon automated anti-money laundering
(AML) solutions to assist investigation teams.

AML solutions typically rely on rule-based sys-
tems (Lietall2017) to alert suspicious cases based on re-
quirements set by international regulatory agencies, such
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as the Financial Action Task Force (FATF). Rules are self-
explainable, which is often a requirement for audition-
ers. Investigators subsequently review the alerts and decide
whether they are indeed suspicious (i.e., true positives) or
false alarms (i.e., false positives). For each true positive,
investigators must file a suspicious activity report (SAR).
While rule systems have the advantage of interpretability,
their simplicity has the drawback of generating many false
positives (Weber et al| 2018) with reported false positives
rates around 95-98% (Lannoo and Parlour2021]).

In this paper, we aim to reduce false alerts by employing
supervised machine learning methods. We call the machine
learning component the triage model, whose task is to pro-
cess the alerts generated by the rules (Figure[Ila). The score
of the triage model enables alert suppression (removing low-
scoring alerts from the queue to be analyzed) or alert prioriti-
zation (ordering the queue of alerts depending on the score).
Because all alerts result from the rules, there is no sacrifice
in explainability.

We summarize our main contributions as follows:

* We propose a machine learning component (the triage
model) that operates on alerts to suppress false positives
or prioritize true positives (Figure[Ila, Section 2.1)).

* We identify promising features to characterize entity
behavior (entity-centric) and relationships between en-
tities (graph-based), specifically for the AML domain.
These include novel degree-based features as well as a
novel version of GuiltWalker (Oliveira et all[2021)) fea-
tures adapted for label delay scenarios. We show how
the graphs can be constructed efficiently by keeping a
smaller memory for legitimate entities (details in Sec-

tions 2.3).

* We evaluate our system on a real-world banking dataset
in an alert suppression scenario, showing how we can
achieve an 80% decrease in false positives with over 90%
detection of true positives (details in Section [3).

The remainder of the paper is structured as follows. We
first detail our methodology in Section2l Then, we describe
the various experiments and discuss results on our real-
world dataset in Section [3l After this, we give an overview
of related work in Section] Finally, we present our conclu-
sions in Section
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Figure 1: Full system overview and triage model details: (a) Our proposed triage component sits downstream of the rules,
eliminating the majority of the false positives. (b) Our proposed system leverages various types of features (entity-centric,
neighborhood degree and illicit-relations), which are subsequently ingested by our Triage model to classify suspicious activity.

2 Methods

In this section, we first provide an overview of our proposed
system (section 2.). We then discuss the various features
used by our system, namely entity-centric features (sec-
tion2.2) and neighborhood-centric features (section2.3)).

2.1 Triage classifier

AML systems typically consist of rule-based systems (illus-
trated by Rules in Figure[Tla). Such systems are straightfor-
ward and interpretable but erroneously alert many legitimate
events, overloading human analysts with false positives. To
address this problem, we introduce a novel machine learning
component to triage the alerts generated by the rules (Triage
model in Figure [[la). As the model operates on the alerts,
it preserves interpretability. The triage model can ingest any
features deemed useful for the AML use-case.

2.2 Profile features

The first set of features engineered for our triage classifier
characterize the history of transactions specific to each ac-
count. Following [Branco et all (2020), we call such features
profiles. Profiles are arithmetic aggregations by a particu-
lar field and over a specified time window, such as the total
amount spent per account in the past week. These features
enable a machine learning model to contrast historical (i.e.,
long windows) with current behavior (i.e., short windows)
and correlate that with suspicious activity.

In our experiments, we create around 400 profiles fea-
tures. We consider the account as our grouping entity and
aggregate over the amount of money sent and received.
We consider five different time windows: one day, one and
two weeks, one and two months. The aggregation functions
include sum, mean, minimum, maximum, and count. We
also compare aggregations over two time windows using ra-
tios and differences. Then we apply feature selection using
permutation-based feature importance, by training a gradi-
ent boosted trees model on a sample of the training dataset,

keeping the smallest set of features which cumulatively con-
tribute up to 90% of the performance for the metric of in-
terest. As a result, we select approximately 100 most im-
portant profiles to enrich our data. All profiles are built us-
ing our company’s in-house platform, which uses automated
machine learning (AutoML) to automatically generate fea-
tures based on the semantic labels of the data fields (e.g.,
entity, location, date, or amount) (Marques et al.[2020).

2.3 Graph neighborhood features

Graph construction Profiles capture entity-centric be-
havior but ignore inter-entity relations. Hence, we propose
to address this shortcoming by enriching the data further
with graph features. Because money flows occur between
bank accounts, an intuitive choice is to represent accounts
as nodes and transactions as edges between accounts. The
direction of the edge follows the direction of the money
(i.e., from sender to receiver), and edge attributes include
the transaction timestamp and amount (Figure 2la).

Nonetheless, scalability issues arise for financial institu-
tions, often processing millions of events per day and ren-
dering using the entire history unfeasible. Since older events
become progressively less relevant, we propose a dynamic
graph construction leveraging sliding windows to limit the
number of events needed at any moment in time. Similarly
to profile features, we compute the graph-based features pe-
riodically (every day in our case). We first update the graph
snapshot of the previous day by removing the edges that no
longer fall within the sliding window and by adding new
edges corresponding to the current day’s events (Figure[2lb).
Secondly, we calculate the graph features for every node
with an event in the target day (i.e., accounts requiring eval-
uation). While the granularity in our experiments is one day,
the frequency is adaptable. In the remainder of this section,
we discuss various AML specific graph features used by the
triage model in our experiments. Nonetheless, the procedure
is extensible to include other graph-based features using the
same transactional graph in the future.
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Figure 2: Graph construction: (a) Toy example of our tabular data and how we represent it in a graph: each entity (account
in this case) is represented by a node, which can have two types (Internal or External). Edges represent transactions between
entities (i.e., accounts). Their direction follows the money flow, edges also have the timestamp and amount of a transaction as
attributes. (b) shows the sliding window procedure when building the graph, given a time window of 60 days; on the second
day, we remove the edges that fall outside the sliding window and add the ones corresponding to the current day.

Degree features We hypothesize that suspicious accounts
have more counterparties on average. To convey this infor-
mation to the model, we calculate the in- and out-degrees
of the target node. Additionally, we compute its successors
and predecessors’ mean, minimum, and maximum in- and
out-degrees. In this way, we create eight new features that
characterize the number of counterparties of an account and
its neighborhood. Analogously, we calculate a weighted ver-
sion of these features by using the transferred amount as the
edge weight. Because the above features contain informa-
tion from nodes that are one hop away from the target node,
they cannot be captured by the profile features.

GuiltyWalker features (GW) Money laundering patterns
typically involve criminal networks. Therefore, suspicious
nodes tend to have a higher probability of being connected to
other suspicious nodes. This property is captured by Guilty-
Walker (GW) features (Oliveira et al/[2021) where random
walks are generated which stop upon reaching a known il-
licit node or if there are no available connections. In our
implementation, we run 50 random walks for each target
node. We then compute the features proposed in the original
work, namely features characterizing the length of the ran-
dom walks (minimum, maximum, median, mean, standard
deviation, 25th, and 75th percentile), the fraction of suc-
cessful random walks (i.e., the “hit rate”), and the number
of distinct illicit nodes encountered.

GuiltyWalker-delay features (GWd) GuiltyWalker as-
sumes immediate feedback, i.e., that labels are immediately
available for all past transactions. In AML, however, in-
vestigations are lengthy, resulting in pervasive label delays.
We propose an adaptation of GuiltyWalker by introducing
a waiting period. We start by training a machine learning
model using profiles and degree features on a first training
set. We use the resulting model to score a second training set
and define a suitable threshold to obtain pseudo-labels. We
then compute the GuiltyWalker features using the pseudo-
labels for the unlabeled transactions in the waiting period
and the actual labels otherwise. Finally, we train the triage

classifier on the second training set, using profiles, degrees,
and GuiltyWalker features.

3 Results

In this section, we first describe the real-world dataset
used in our experiments (Section 3.I). We then discuss
the experiments with our proposed triage machine learn-
ing model, using the raw tabular data enriched with engi-
neered features, namely entity-centric features (Section
and neighborhood-centric features (Section[3.3).

3.1 Dataset

We use a real-world banking dataset for all our experiments.
We can not disclose the bank’s identity nor provide exact
details for privacy reasons, but we provide approximate met-
rics to characterize the data where possible.

The raw dataset contains approximately half-million
alerted transfers between 400,000 accounts and spans over
approximately one year. It contains information on whether
an account is internal to a bank or external. Transfers occur
in both directions between two internal accounts or between
an external and an internal account. The dataset is labeled on
a transaction level, with a binary label indicating whether a
transaction was part of a SAR. However, we devise the pro-
posed triage classifier to generate alerts at the account level,
as is typical in AML. Moreover, in our experiments, we aim
to evaluate accounts daily. Hence, we preprocess the raw
dataset to contain aggregated daily account features, includ-
ing total sent and received amounts, the counterparties, the
associated timestamps, and the direction. We then extrapo-
late from the transactional labels to infer the account labels:
if there is a suspicious transaction involving an account on
a specific day, we mark that account as suspicious on that
day. Importantly, this means that suspicious accounts form
connected pairs in our preprocessed dataset. The percentage
of suspicious accounts in our dataset is less than 3% of the
alerted ones, resulting in over 97% false positives. The sole
categorical feature is account type (external or internal) and



Algorithm | | Hyperparameters
GLM Alpha . [0.01 - 0.09]
Standardize numericals | [True, False]
Rand Max depth of trees [10 - 40]
Fan om Number of trees [100 - 200]
orest
Min instances for split [10-50]
Num of leaves [200 - 500]
LightGBM Min data in leaf [100 - 200]
Learning rate [0.01 - 0.09]

Table 1: Various algorithms and respective hyperparameter
values tried in our hyperparameter search.

encoded with a single binary feature (0 or 1 respectively).
Numerical features are kept without further processing. We
start from this dataset to compute all subsequent features.

Train-val-test split We split the dataset temporally into
three non-overlapping periods. We use the oldest 60% for
training, then 10% for validation, and the most recent 30%
for testing our models. For the GuiltyWalker with delay fea-
tures (see Section 2.3)), we split the training set further in
half.

3.2 Triage model using entity-centric features

All experiments are performed on a real-world banking
dataset (Section[3.1)), where the entities to be labeled are the
bank accounts. All the models use the same inputs, which
are the raw features explained in Section and a set of
around 100 profiles based on each account’s sent and re-
ceived transfer amounts (Section2.2). Our first triage model
is trained using only the raw features and these entity-centric
profile features.

We aim to maximize the suspicious activity captured by
our triage model (true positives) while minimizing incorrect
alerts (false positives). We choose our optimization objec-
tive to maximize recall at a specific false positive rate (FPR).
The FPR can be chosen in accordance with the client. In
our experiments, we consider recall@20%FPR as our target
metric, which translates to a reduction of the false positives
by 80% compared to the rule system itself. Moreover, be-
cause most events are legitimate, the chosen FPR (i.e., 20%)
roughly corresponds to the number of alerts to be reviewed
to obtain a particular recall.

We perform an extensive evaluation of various machine
learning models, namely Random Forest, Generalized Lin-
ear Modeling (GLM), and LightGBM (Ke et al![2017) over
a wide hyperparameter range. The various algorithms and
hyperparameter ranges are reported in Table

In total, we trained 50 models on the training set, and
Recall20%FPR is compared on the validation set. The top-
performing model was a LightGBM, with a test performance
close to 80%recall@20%FPR. This LightGBM model was
considered as our baseline triage model in subsequent ex-
periments.

3.3 Extending Triage Model with Neighborhood
Features

We hypothesize that suspicious accounts are differently in-
terconnected than legitimate accounts. To capture such re-
lationships between accounts, we build a directed graph us-
ing the accounts as nodes and the transactions between ac-
counts as directed edges (details in Section[2.3)). Because old
events become less relevant for current predictions, we con-
struct the graph dynamically using a sliding window to only
include accounts making recent transactions. In the next ex-
periments we create graph snapshots covering time windows
of 60 days as suggested in (Jullum et al![2020), and subse-
quently investigate different windows for suspicious and le-
gitimate events.

Degree Features. We first hypothesize that the number
of neighbors and the money flow may differ based on
the account class. Therefore, we calculate the in- and out-
degree features of a node and its one-hop neighbors. The
neighbor degrees are aggregated using mean, minimum, and
maximum operations (details in Section[2.3). Adding these
neighborhood degree features to the baseline model im-
proves the performance by 11.6 percentage points (p.p.) Re-
call@20%FPR, corroborating our initial hypothesis. (Fig-
ure Bl +Degrees). We also calculate weighted versions of
these features, where the weight is the amount of money be-
ing transferred, but did not surpass the performance of stan-
dard degree features (Figure 3l +Weighted Degrees).

GuiltyWalker features. Because money laundering often
manifests itself in networks of criminal accounts, we hy-
pothesize an increased probability of finding connected sus-
picious nodes. We, therefore, compute GuiltyWalker (GW)
features (Oliveira et al![2021)), which capture distance to sus-
picious nodes using random walks (see Section2.3)). Adding
the GW features to the baseline model improves the perfor-
mance by 13.4 p.p. in Recall@20%FPR (Figure B +GW).
Interestingly, GW improves performance up to 38% in the
lower FPR region.

We subsequently add the degree features and the Guilty-
Walker feature in conjunction with the baseline model and
investigate whether they capture different information. Our
results show that the two sets contain overlapping informa-
tion, but the combined model is still better than models using
any of the features separately: the gain achieved is 15.5 p.p.
Recall@20%FPR (Figure[Bl + GW+Degrees).

GuiltyWalker-delay features (GWd). Our experiments
show that GW features capture useful information for our
task of reducing false positives. However, the original GW
algorithm (Oliveira et al| 2021)) assumes that every day we
have all the accurate labels from the previous days. This as-
sumption does not apply in realistic banking AML scenarios
because it takes time for analysts to escalate alerts, review
cases, and file SARs. We, therefore, adapt the GW algo-
rithm to leverage a model score and a threshold to create
pseudo-labels instead of the actual label for the most recent
events (details in Section 2.3). To determine the threshold
hyperparameter, we perform a grid search using the follow-
ing values: 0.1, 0.15, 0.25, 0.5, 0.89 (a threshold that main-
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Figure 3: Triage models with graph features: Difference in
recall compared to our baseline model without graph fea-
tures. GuiltyWalker (GW) features achieve large gains at
low FPR. Adding degrees on top of GW features further im-
proves performance at intermediate FPRs (GW+Degrees).
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Figure 4: Label delay experiments: Increasing delay de-
creases recall. Adding degree features boosts the perfor-
mance of the GWd models (shown for seven days delay:
GWd 7 days + Degrees).

tains the same percentage of positives in the validation set
as in the train set), and 0.43 (a threshold corresponding to
20%FPR when evaluating the validation set using our base-
line model). Assuming a label delay of 7 days, we found that
the gain in recall@20%FPR achieved a peak of 6.4 p.p. for
a threshold of 0.25 while performing worse for smaller or
larger thresholds.

We experiment with label delay scenarios ranging from
1 day to 30 days. As expected, the shorter the labeling de-
lay, the better the performance (Figure d)). Despite a drop in
performance compared to the original GW features at low
FPRs, an exciting outcome of this experiment is that GWd
features are beneficial when added to the baseline model,
even with a label delay of one month.

We then test the combination of degree features and GWd
features with our baseline model. While adding the degree
features improves the detection of true positives, we notice
that it does not beat results when using the degree features
without GWd (compare blue line in Figure [3] with the red
line in Figure[)). We verify that this is also true when degrees
are calculated on the smaller training set used for the GWd
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Figure 5: Time window experiments: Time windows for sus-
picious events (TWS) reach a plateau in performance for
values of 20-30 days. Time windows for legitimate events
(TWL) reach maximum performance for a value of 1 day.

models (data not shown). Because the degrees features are
computationally lighter to compute, a good choice in sce-
narios like ours is discarding the GWd features.

Sliding window and memory of suspicious nodes In the
previous experiments, we built a dynamic graph using a slid-
ing time window of 60 days (Section 2.3). We now won-
dered how changing this window affects the triage model
performance. Moreover, since our experiments showed that
connections to known suspicious accounts are important
features, we investigate whether keeping a more extended
memory for such suspicious accounts compared to legiti-
mate ones is helpful. To this end, we use a different window
for each event type (legitimate vs. suspicious) and retrain
our best model for a realistic case of label delays, which
uses only degrees features as described in the previous sec-
tion. Similar results were obtained when retraining the best
model without label delay (using degrees+GW features, data
not shown). We perform a grid search for values of these
time windows between O days (i.e., events are not used in
the graph at all) up to 90 days. For brevity, we refer to the
time window for legitimate events as TWL and to the time
window for suspicious events as TWS. Firstly, we find that,
for any value of TWS, the best performance is achieved for a
TWL equal to one day. Secondly, the performance increases
only marginally when increasing the TWS beyond 30 days
(Figure ). Therefore, we can construct a good model effi-
ciently by keeping only one day of legitimate events and 30
days of suspicious events in our graph. Importantly, having
separate time windows for legitimate and suspicious events
implies knowing the label at least after the duration of the
smallest time window. Thus, for a label delay of 7 days, the
best model we can construct efficiently would be using a
TWL of 7 days and a TWS of 30 days. Nonetheless, it is
interesting that we can significantly reduce the data needed
to construct the graph without sacrificing performance.

4 Related Work

The most common systems to detect money laundering
based on transaction data employed by banks are rule
based (Weber et all 2018). In this work, we tackle the is-
sue of reducing false positives of such systems, therefore



keeping the rules for compliance and explainability reasons.
In contrast, most of the existing works discussed below re-
place the rule-based system entirely and try to tackle two
problems at once: reducing false positives on the one hand
and reducing false negatives on the other hand. For thorough
reviews of machine learning approaches for AML, we re-
fer the reader to (Chen et al![2018;Tiwari, Gepp, and Kumat
2020).

We can divide the machine learning AML systems
into unsupervised and supervised methods. The ma-
jority use unsupervised techniques due to the lack of
real-world labeled datasets available in the money laun-
dering domain. The typical approach is to firstly cluster
events, followed by anomaly detection. To address the
lack of data, various strategies have been proposed. Fi-
ther a fully synthetic dataset is generated (Luna et al.
2018; [Drezewski, Sepielak, and Filipkowski [2012), or
only unusual accounts are simulated within a real-world
dataset (Tang and Yin [2005; [Liu, Zhang, and Zeng 2008;
Gad [2009; [Wang and Dong[2009), or one assumes that rare
events within a peer group are suspicious (Larik and Haider
2011). One drawback of anomaly detection approaches
is the assumption that suspicious activities are outliers,
which may not always be the case since money launder-
ers try to simulate legitimate behavior (Lorenz et al.
2020). Arguably, better validations of the systems
were reported in (Yangetal! 2014; |(Camino et al! 2017;
Shokry, Rizka, and Labib [2020) using analyst feedback, or
in (Liu and Zhang 2010) using real labeled data and where
authors report a 52% recall@5%FPR.

Supervised methods leverage labeled training data. Luo et
al. (Lud|2014) generate synthetic data and propose a classi-
fication algorithm based on association rules to detect suspi-
cious events. Other researchers use real-world datasets and
aim to detect suspicious behavior by training classification
algorithms like SVM (Keyan and Tingting [2011)) where au-
thors report 64% recall@6%FPR, XGBoost (Jullum et al.
2020) obtaining an AUC of 82%, or after comparing vari-
ous algorithms (Zhang and Trubey 2019) in which the best
model was a neural network and obtained 74% AUC. The
performances of various models are hard to compare across
the studies due to their different metrics and datasets.

Recent work has tried to incorporate graph information in
the AML system in order to capture network patterns. We-
ber et al. [Weber et all (2019) benchmarked graph convolu-
tional networks against various supervised methods and con-
cluded that random forest algorithms provide a better perfor-
mance, despite the lack of graph-based information. Oliveira
etal. (Oliveira et al|[2021)) propose Guilty Walker, leveraging
random walks on a cryptocurrency graph to characterize dis-
tances to previous suspicious activity. The authors reported
a 5 p.p. improvement in F1 score when including these
novel features. Random walks were also used in (Hu et al.
2019) on top of a transaction graph representing the bit-
coin network.|Savage et all (2016) propose a community de-
tection approach, from which neighborhood-centric features
are extracted and ingested by a supervised machine learning
model. On a real-world dataset, the best model was a random
forest classifier achieving over 80%recall@20%FPR.

Finally, other works propose graph-based suspiciousness
scores based on money flows (Lietal! 2020; |Sun et al.
2021). These algorithms do not use a learning algorithm
and instead build a detection system incorporating business
knowledge about money flows. The scope is to detect novel
types of money laundering activity (i.e., reducing false neg-
atives), while our goal is to reduce incorrectly alerted events
(i.e., reducing false positives).

5 Conclusion

In this work, we proposed a machine learning triage model
to reduce false positives of an AML rule-based system. Our
triage model is deployed after the rule-based system, only
processing alerted events and therefore not replacing the
rule-based system. In this way, maintain the explainability
and compliance of the rules.

The triage model is trained on a real-world banking
dataset enriched with two sets of engineered features, entity-
centric features capturing the usual entity behavior and
graph-based neighborhood features capturing the character-
istics of entity interactions. We show how both sets of fea-
tures lead to substantial improvements, and combining them
allows us to alert only 20% of the events while capturing
over 90% of the suspicious entities. Moreover, for time and
memory efficiency, our graph is computed using sliding win-
dows, and we show how it is beneficial to keep a longer
memory of the suspicious accounts than the legitimate ones.
Because the majority of accounts are legitimate, this signifi-
cantly reduces the computational load on the system.

In this work, we experimented with two types of graph-
based features (degree and GuiltyWalker), but our frame-
work can be easily extended in the future to include new
graph-based features. Moreover, if relevant in the respective
dataset, the proposed neighborhood degree features could
be expanded to include more distant node information. Our
novel version of the GuiltyWalker features (GWd) works in
a realistic AML setting with label delay. We showed how
this delayed version remains beneficial for our classifier, de-
spite a drop in performance compared to the non-delayed
version. However, this benefit is abolished if degree features
are included, which therefore contain overlapping informa-
tion in our dataset. Moreover, the GWd performance de-
pends on the power of our baseline model, and improving
this model in the future may close the gap between the de-
layed version and the original algorithm.

We have evaluated all experiments using re-
call@20%FPR. This metric was chosen to have an
alert suppression strategy in mind, i.e., discarding alerts
that receive a small triage model score. The same setup can
also be used in an alert prioritization strategy, using the
triage model score directly to order the alerts for review, or
a hybrid strategy combining suppression and prioritization.
Ultimately, using our triage model in any such situation will
improve anti-money laundering systems.
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