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Figure 1: Feature Monitoring System Overview

ABSTRACT
Monitoring the behavior of automated real-time stream process-
ing systems has become one of the most relevant problems in real
world applications. Such systems have grown in complexity re-
lying heavily on high dimensional input data, and data hungry
Machine Learning (ML) algorithms. We propose a flexible system,
Feature Monitoring (FM), that detects data drifts in such data sets,
with a small and constant memory footprint and a small compu-
tational cost in streaming applications. The method is based on
a multi-variate statistical test and is data driven by design (full
reference distributions are estimated from the data). It monitors
∗Work developed while employed at Feedzai.
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all features that are used by the system, while providing an inter-
pretable features ranking whenever an alarm occurs (to aid in root
cause analysis). The computational and memory lightness of the
system results from the use of Exponential Moving Histograms. In
our experimental study, we analyze the system’s behavior with its
parameters and, more importantly, show examples where it detects
problems that are not directly related to a single feature. This illus-
trates how FM eliminates the need to add custom signals to detect
specific types of problems and that monitoring the available space
of features is often enough.

CCS CONCEPTS
• Computing methodologies→Anomaly detection; •General
and reference→ Empirical studies.

KEYWORDS
data streams, drift detection, real-time monitoring
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1 INTRODUCTION
Real-time stream processing systems have become ubiquitous in
recent times. The way they are set up often implicitly assumes that
future data flowing through the system will always follow the same
distribution. Thus, even though the system may initially perform
well, over time, due to data drift, a static configuration may result
in performance deterioration, requiring reconfiguration over time.

In the financial services industry, data drift can occur due to
expected (e.g., seasonality) or unexpected factors, such as market
shifts, new buying patterns introduced by disruptive technologies,
or some technical issues that might corrupt the observed data.
Furthermore, the drift can be gradual or sudden, [16], and it may
occur in specific features of the data or collectively on all of them.
Machine Learning (ML) models responsible for predictive tasks
can make absurd decisions extrapolating from the short-sighted
training set observations, impacting businesses and system users.

Accurate and timely detection of data drift allows for early mit-
igation of its effects. This challenging task is made easier when
labels arrive instantaneously and real-time evaluations are possible.
However, in many domains, such as fraud detection [31], labels may
not be available for several weeks. In this scenario, unsupervised
methods are necessary to detect data drift in a timely manner, accel-
erate corrective action and minimize business costs. Furthermore,
in many streaming scenarios, data is generated at a very high rate.
Thus, if real-time monitoring is required, lightweight solutions with
low computational, storage and memory costs are essential.

In this article, we present a system to automate the detection of
data drifts based on monitoring the distribution of data features,
which we refer to as Feature Monitoring. Our solution guarantees a
lowmemory footprint, using histograms to summarise distributions,
as well as low computational costs (hence low real-time latencies)
using methods that support recursive updates. The drift detection
and alarming is based on a multivariate data-driven statistical test
using a reference data period. Thus, our method does not make
strong assumptions on the data distributions or their drifts.

Besides producing alarms, the system outputs continuous signals
that can be used to visualize the global state of the data being
monitored. The various signals are mapped directly to interpretable
features that provide an explanation via a ranking of the features
that are responsible for the alarm. The statistical test deals with the
problem of multiplicity correcting for multiple hypotheses testing.

Overall, our system differs from the existing literature (see also
the related work in Sect. 5) in that it combines several characteristics
in one system, namely, (i) it provides a computational and memory
efficient method for streaming data, (ii) it is intrinsically multi-
variate and multi-signal (monitoring a multi-dimensional feature
space), and (iii) it provides an explanation to point the user to the
source of the problem. One crucial ingredient in our data-driven
approach is that we sample various periods to define the reference
distribution of diverging behavior. This effectively allows for a large

tolerance to temporal changes as observed in the training, which
in turn avoids an over alarming system.

In sum, our main contributions are:
• A data-driven method to build a reference representation of a
data period and its fluctuations (Sect. 2.1).

• A computational andmemory efficientmonitoring procedure that
defines alarms and provides an explanation on which features
are important to explain the alarms (Sect. 2.2).

• An empirical study of the method for several real world datasets,
including a public dataset, in the fraud detection domain. This
includes studies of: parameters sensitivity (Sect. 4.1), detection
of real world drifts (Sect. 4.2), and of injected drifts (Sect. 4.3).

2 METHODS
We propose a system to monitor the distribution of features (cate-
gorical or numerical) of a dataset. We develop an efficient method
that can both be used in a streaming production environment for
monitoring, as well as in offline data exploration, which we denote
as Feature Monitoring (FM). The system is application agnostic,
however a common use case is when features are used by a ML
model for predictive tasks or in decision systems based on rules.

In Fig. 1, we present a schematic overview of the system. The
two main components are summarized in the box diagrams on
the left (Training) and on the right (Monitoring), connected by the
Feature States computed in Training (dashed line blocks). In the
next sections we describe each component in detail.

2.1 Train References Component
In this section, we describe the Training component (left block di-
agram of Fig. 1). Its purpose is to estimate reference distributions
for each of the features being monitored. This is based on a fixed
Reference Data source containing several events (grey cylinder).
Typically, the reference should comprise an extended period of sev-
eral weeks or months of data, depending on the stream’s event rates.
This can correspond, for instance, to a ML model training period.
In the next sub-sections, we describe each step of this component.

2.1.1 Reference Histograms. Given a set of features to monitor, the
first step of the method is to build an overall reference histogram
𝐻𝑅,𝑓 for each feature 𝑓 = 1, . . . , 𝑁 to characterize the training data
distribution in the reference period, 𝑋𝑇 , (top left green panel in
the Training block of Fig. 1). 𝑋𝑇 should be a representative sam-
ple of the whole training period. For each 𝐻𝑅,𝑓 we use a set of
equal-frequency, i.e., quantile, bins (see leftmost green block in
Fig. 1) to cover the densest regions of the distribution with a larger
number of bins. Our histograms are built using 𝑏 + 3 bins where 𝑏
bins are used to cover all existing values in the distribution of the
reference data, and 3 additional bins are added: ]−∞, bin(1)min]
(leftmost),

]
bin(𝑏)max, +∞

[
(next to rightmost) and [NaN] (right-

most). The semi-infinite bins cover regions not observed in the
reference dataset. In contrast, the NaN bin is necessary for instances
with invalid feature values (e.g., an empty value due to a feature
collection problem). This way we ensure that the histograms always
have full support for any possible value.

2.1.2 Sampling of Time Steps. The second step in building the refer-
ence is to randomly sample observation time steps in the reference
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period. This is motivated by the goal of monitoring feature values
in an online production environment, usually covering timescales
that are shorter than the reference period. For example, assume
that the reference data corresponds to six months used to train an
ML model. We may wish to monitor the behavior of the features in
one week periods after the model was deployed in streaming.

Our main assumption is that the reference period defines the
expected distribution of data shifts. Hence, at each time step, we
want to monitor the distribution of a feature’s values by comparing
its distribution in the original reference (or training) period with the
distribution in shorter monitoring periods. To perform this compar-
ison, we use a divergence measure (details in Section 2.1.3) to obtain
the histogram of divergence values, 𝐻𝐷,𝑓 (see the bottom green
block in Fig. 1) by computing the divergences of 𝐻𝑓 histograms for
all sampled time steps with the reference one 𝐻𝑅,𝑓 .

Computing a feature histogram and subsequent divergence value
for each event can be very heavy for realistic datasets with millions
of events per day. To bypass this problem, we resort to random sam-
pling to obtain a smaller number of time steps at which to compute
the divergence values. For this sampling to be representative, we
need a minimum number of samples,𝑀 , which we estimate next.

Note that the proposed system focuses on monitoring events
for which the divergence values become large, i.e., in the higher
quantiles of 𝐻𝐷,𝑓 . This requirement means that a good estimate
of the upper tails of all the distributions is needed. Our monitor-
ing approach (described in more detail in later sections) will be to
perform a statistical test under a multiple null hypothesis that the
divergence values observed in Streaming follow the same distribu-
tions as the 𝐻𝐷,𝑓 . The multiple hypothesis test requires setting a
global significance level (family-wise error rate) 𝛼 for its composite
null hypothesis, which corresponds to the 𝑝-value of rejecting it
due to random fluctuations. This usually results in a much stricter
significance level applied to at least some of the individual hypothe-
ses, since the probability that at least one of the tests fails by chance
grows with the number of tests.

To obtain a conservative upper bound on the critical level for
any feature, we first refer to the Bonferroni correction, which is
valid even if the hypotheses are dependent. Therefore, if any of the
𝑁 individual hypothesis fails the test at a level 𝛼 = 𝛼/𝑁 then the
multiple hypothesis fails at a level 𝛼 . We aim to ensure that our
divergence histograms have enough points to estimate the 𝛼-upper-
tail appropriately based on this conservative bound. If the number
of samples produced to represent𝐻𝐷,𝑓 is𝑀 , then the probability, 𝑝0,
that none of those samples falls on the tail (assuming independent
samples) is 𝑝0 = (1 − 𝛼)𝑀 . Furthermore, because we are building
𝑁 histograms, we need to limit the probability that any histograms
are missing samples in the tail of the distribution. The probability,
𝛾 , that one or more histograms miss samples on the tail is related
to the probability that none of them miss samples on the tail1:

𝛾 = 1 − (1 − 𝑝0)𝑁 = 1 −
(
1 − (1 − 𝛼)𝑀

)𝑁
. (1)

This limits the probability of having one or more “tail”-incomplete
histograms. Inverting this formula and replacing 𝛼 by 𝛼/𝑁 we

1For this estimate, for simplicity, we now assume independence between the features.

obtain that the minimum number of samples𝑀 is:

𝑀 =

log
[
1 − (1 − 𝛾)1/𝑁

]
log

(
1 − 𝛼

𝑁

) ≃
𝛼,𝛾≪1

𝑁 log
(
𝑁
𝛾

)
𝛼

. (2)

For example, with a family-wise error rate 𝛼 = 0.01, 𝑁 = 100
features and 𝛾 = 0.01 we can estimate to need at least𝑀 ≃ 9.2×104

samples. Using the binomial distribution, we also get the estimate
of 9.2 ± 3.0 samples in the tail region of each histogram.

2.1.3 Moving Histograms. Once the time steps have been randomly
chosen, we need to compute the sample histograms, 𝐻𝑓 , and the
corresponding divergence relative to 𝐻𝑅,𝑓 .

The simplest method to compute a moving histogram, 𝐻𝑓 , to
estimate the distribution of a feature in a given period would be to
use a sliding window (e.g., one week) and compute the histogram
using all the window events. However, in a production environment
in Streaming this method requires storing and aggregating events in
the window, which can be very heavy, especially for long windows
and/or use-cases with large event rates. Therefore, in our method,
we choose to estimate the distribution of features using either an
Unbiased Exponential Moving Histogram (UEMH) or its time-based
version Unbiased Time-Exponential Moving Histogram (UTEMH)
as described in Ref [19]. Using these methods, no events need to be
stored, only the histogram itself at each time step. The histogram
is updated on each incoming event via a recursion formula making
the time and memory complexities of this method 𝑂 (𝑛 𝑏), with 𝑛

the number of features and 𝑏 the number of histogram bins. Since
these two quantities are constant and small, we can say that the
complexity of the update operation is constant both in time and
memory. All past events contribute to the histogram, 𝐻𝑓 , but with
an exponentially decaying weight, i.e., older events are gradually
forgotten. The half-life, 𝜏1/2 (or the event based version 𝑛1/2) is the
counterpart of the window size (for sliding windows) and controls
the timescale of the histogram. It corresponds to the time (or the
number of events) until the contribution from a given event is
reduced by half. So, for example, if we want to monitor a timescale
of about a week, a half-life of a few days is appropriate to suppress
events beyond a week. In Fig. 1, we represent this exponential
decaying window with a fading dark blue color gradient in the
rectangle above the histogram of each sample.

2.1.4 Distribution of Divergences & Outputs. The last piece of the
Training component inner loop is the computation of the histogram
to represent the distribution of divergence values, 𝐻𝐷,𝑓 . This is
illustrated in the left bottom green block in Fig. 1, where the arrows
connecting to the histogram (Compare step) indicate the comparison
between the reference histogram 𝐻𝑅,𝑓 and each sample 𝐻𝑓 . Each
divergence value contributes to a given bin of 𝐻𝐷,𝑓 .

The divergence measure used in this procedure to compare his-
tograms can be any measure and it does not have to be the same for
all features. There are numerous measures of divergence available
in the literature such as the Kolmogorov-Smirnov (KS), Kuiper, and
Anderson-Darling test statistics [3, 13, 18] and various information
theory divergences such as the Kullback-Leibler (KL) divergence
and the Jensen-Shannon Divergence (JSD) (for a recent review
see [5]). The JSD is well suited to categorical data (though it can
also be used for numerical data) and is well defined even if there are
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regions where only one distribution has support. A shortcoming of
the JSD is that it has no explicit notion of distance between points
in space. Thus, for numerical data we also use the Wasserstein
Distance, [23], or the KS measures as alternatives.

Finally, the last step of the Training component procedure con-
sists of outputting the final state, for each feature, to be used in the
Monitoring component. This is represented schematically in the
middle block in Fig. 1. In summary, for each feature 𝑓 , the initial
state for the Monitoring component will contain a reference his-
togram 𝐻𝑅,𝑓 , a histogram of divergence values 𝐻𝐷,𝑓 , and an initial
configuration for 𝐻𝑓 . The latter is chosen so that the streaming
histogram starts in a configuration that represents the reference
period to avoid initial artificial alarms (e.g., the last sample in the
Training period or a copy of the full reference histogram).

2.2 Monitoring Component
After building a reference, the system is ready to monitor a data
stream. The right block of Fig. 1 contains a diagrammatic repre-
sentation of the Monitoring component of the system, which we
detail in the next sections. This is responsible for analyzing periods
of data (e.g., one week of data monitored daily) of another dataset
(e.g., after the system is deployed in production), to detect the level
of divergence in each feature relative to the reference. It can alarm
several features, rank them in a scale of severity and output useful
visualizations of the evolution of the monitored signals.

In real-time applications, the monitoring runs over an unbounded
stream of data, i.e., the streaming computation is supposed to “run
forever”. The main monitoring loop of Fig. 1 takes the stream as
an input and processes each incoming event, either one by one
or periodically. The input also contains the feature states which
include, e.g., the reference histograms 𝐻𝑅,𝑓 and divergence values
𝐻𝐷,𝑓 per each feature 𝑓 being monitored. An additional configu-
ration parameter specifies the frequency (time or event based) at
which the multiple hypothesis testing occurs (e.g., daily).

2.2.1 Histogram updates. The first operation depicted in Fig. 1
is the Update of the Streaming Histograms. For a pure streaming
implementation this occurs for all incoming events. However, this
may also be processed in batches if the monitoring frequency is not
event-by-event. For simplicity, we focus on describing the event-by-
event update, as indicated by the arrows connecting to the green
circle event contributing to the first step of the update. This opera-
tion has to be performed, for each feature, using the same update
method that was used in the Training component to build the cor-
responding samples of streaming histograms.

In our experiments we use UEMA-based histograms. In the right
panel of Fig. 1 we observe, in further detail, the steps to update the
streaming histograms for each incoming event. When the latest
event arrives, all bin counts in the histogram are suppressed by a
common factor according to the type of UEMA histogram used (as
discussed in Sect. 2.1). This is either a constant, if event-based, or an
exponential of the time difference since the last event, if time-based.
The second step identifies the bin corresponding to the feature
value for the incoming event and increases its count by one (lighter
cyan bin increment, pointed to by the arrows - right of Fig. 1).

The histogram update operation is the most computationally
demanding component of the system because it is done for each

event on the stream. As already discussed in Sect. 2.1.3, using the
Exponential Moving Histograms methods (UEMH and UTEMH),
we can reduce the time and space complexity of such an operation
to a constant factor that depends only on the number of features
under monitoring and the number of histogram bins used.

2.2.2 Streaming Signals Calculation. The next part computes the
signals monitored for each feature, to test if an alarm should be
raised. This is depicted below the histogram updates in Fig. 1.

The process starts with the computation of the divergence be-
tween the current streaming histogram, 𝐻𝑓 , for each feature 𝑓 , and
the corresponding reference histogram, 𝐻𝑅,𝑓 . This is then located
on the 𝐻𝐷,𝑓 histogram of each feature, represented at the bottom
of the diagram in Fig. 1. The 𝑝-value for a divergence value to be
within the expected distribution of divergences is estimated as:

p-value(𝑑) = 1 −𝐶𝐷𝐹𝐻𝐷,𝑓
(𝑑) (3)

where 𝐶𝐷𝐹𝐻𝐷,𝑓
stands for the Cumulative Distribution Function

of 𝐻𝐷,𝑓 and 𝑑 is the divergence value observed for feature 𝑓 . Each
of these 𝑝-values is represented in the 𝐻𝐷,𝑓 histograms of Fig. 1 by
the gray bars to the right of the observed divergence value.

2.2.3 Multivariate Test. After all the 𝑝-values are calculated, a mul-
tivariate hypothesis test is applied (see top right box in Fig. 1). We
focus on the Holm-Bonferroni correction, [10], because of its com-
putational simplicity while controlling the family-wise error rate
and for not assuming any independence between the tested hypoth-
esis. The 𝑝-values are first ordered by ascending value 𝑝1, . . . , 𝑝𝑁 .
Note that to each 𝑝-value 𝑝𝑖 we associate a feature 𝑓𝑖 . Then we
scale each 𝑝-value 𝑝𝑖 to produce a signal, 𝑠𝑖 , defined as

𝑠𝑖 = 𝑝𝑖 × (𝑁 + 1 − 𝑖) , with 𝑖 = 1, . . . , 𝑁 . (4)

Finally, the null hypothesis is rejected if, for any (or several) of the
features 𝑓𝑖 , we have 𝑠𝑖 < 𝛼 , and an alarm is raised. Note that for
this test 𝛼 serves as the threshold (dashed orange line in Fig. 1).

2.2.4 Output. The final step is to generate an explanation to pass
to the user of the system, that may help to quickly identify the root
cause of the issue. The main elements of the output are:
• Feature Histograms: The histograms computed at each step can be
used to visualize specific features and their state at a given point
in time compared to the corresponding reference histograms.

• 𝑝-values and signals: The signals ranking automatically provides
a measure of each feature’s importance to explain a given diver-
gence, i.e., which features deviate the most from their reference
distribution. For the Holm-Bonferroni test, this already considers
that we are testing several features simultaneously. One useful
class of visualizations that efficiently summarize the current and
past alarm state of all the available features are heat-maps dis-
playing the signal values of each feature over time, with higher
color density for features that are in a stronger alarm state.

After the output of the system state, the main loop goes back to the
beginning, and the system waits for the next event to process.

3 EXPERIMENTAL SETUP
In this section we provide a description of the data and of relevant
concepts used in the experiments to assess the FM system.
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Our objectives are two-fold. First, we explore the impact of dif-
ferent system configurations on both alarm frequency and duration.
Secondly, we aim to determine if the alarms work as intended to
properly detect deviating patterns. For the first set of experiments
we only use real world production data, which enables stronger
production-ready conclusions. In the second set, we also use a pub-
licly available anonymized real world dataset to inject artificial
drift. This allows us to control the ground truth drift labels while
allowing for the reproducibility of our results.

In both sets of experiments, we build the reference from a train-
ing period, and then process the target data to be monitored in a
streaming fashion as it would arrive at the system in a production
environment. Each monitoring step (computation of histograms,
divergences and alarm verification) was performed with a daily
frequency. The frequency of the verification of alarms is chosen
considering the duration of a relevant alarm. We define a relevant
alarm to last at least the typical debugging time a team of analysts
would spend trying to identify the problem. In our use case, we
consider daily checks to be a reasonable periodicity.

In the next subsections we describe each of the datasets used,
their pre-processing (Sec. 3.1), and provide details on the hyperpa-
rameter space used in the experiments (Sec. 3.2).

3.1 Data
We study four different datasets containing credit card transactions,
both fraudulent and legitimate. Moreover, these datasets represent
two types of entities where financial fraud is present, specifically,
merchants and payment processors.

Three of the datasets (twomerchants and one payment processor)
are private, and, for this reason, the client name and the name of the
features in the dataset are anonymized throughout the article. We
will refer to these datasets as merchant 1, merchant 2 and payment
processor 1. The fourth dataset was made publicly available2 by
Vesta Corporation, which is a company providing e-commerce
payment solutions. We refer to it as payment processor 2.

The data for merchants 1 and 2 span a period of 22 and 2.5
months, respectively. The data for payment processors 1 and 2 span
over 1 year and 6 months, respectively. The daily rate of events
per dataset ranges from several thousand to several millions of
transactions, with fraud rates at the percent order or smaller. To
speed up the experiments with payment processor 1, a random
sampling of 2% of the original data was used to reduce its volume to
the same order of magnitude as that found in the merchant datasets.

3.1.1 Features. The features for the proprietary datasets were gen-
erated from the raw fields of the transactions. The features of the
merchant 1 and merchant 2 datasets were designed by an expe-
rienced team of data scientists and fraud analysts. The payment
processor 1 dataset had its features generated using an automatic
feature engineering system that is focused on designing an exten-
sive set of features to detect fraud patterns [17]. In both cases, this
resulted in several hundreds of features, most of which were nu-
merical and a smaller fraction were categorical. The exception is
the public dataset, for which, for the first set of experiments, it was
used as it was, with almost all features being categorical.

2Dataset available at https://www.kaggle.com/c/ieee-fraud-detection/overview.

3.1.2 Data Splitting. The 4 datasets were split into reference and
streaming sets. For simplicity, we used reference and streaming
periods equal to those used for training and testing previous ML
models. For example, for merchant 1, 10 months were used for the
reference while the following 12 months were used as the streaming
set. Complete information for each dataset is summarized in Table 1.

3.2 Parameter Configurations
To achieve the goal of understanding the impact of different system
configurations, we varied the following parameters:
• Half-life 𝜏1/2: This controls the timescale covered by the target
streaming histogram window. The time-based values used were
1 week, 2 weeks and 1 month. This was then converted to an
event-based half-life 𝑛1/2 according to the average event rate.

• Number of bins 𝑏: This parameter sets the number of bins for
the histograms. We used three values: 50, 100 and 200.

• Divergencemeasure:We used Kolmogorov-Smirnov (KS),Wasser-
stein (W) and the Jensen-Shannon (JS) for numerical features (as
described in Sect. 2, ). For categorical features we always use JS.

Finally, we fixed 𝛾 to 0.01 (see also Sec. 2). Then we ran the FM
system for all combinations of the aforementioned parameters. This
results in 27 different configurations to experiment for each dataset.

4 RESULTS
In this section, we present the results obtained after running the FM
system for the datasets and scenarios described in Sec. 3. We start
by showing the impact of the various parameters on the multiple
runs in Sec. 4.1. Then, in Sec. 4.2 and 4.3, we show visualizations
that illustrate how the system reacts to feature drifts and help to
assess the quality and usefulness of the proposed solution.

4.1 Effect of the system parameters
To study the sensitivity of the FM system on its configuration
parameters, we define two aggregations over the series of alarms
obtained in a system run:
• Relative number of chained alarms: This metric attempts to cap-
ture the effective number of distinct alarms within a feature. It
is averaged over all features and normalized by the maximum
number of chained alarms that could arise in principle, which is
equal to a chain of on-off alarm signals.

• Average alarm duration: This is a measure of the average duration
of the chained alarms per feature. It is computed as the average
of the number of alarms for each chained alarm.
In the top row of Fig. 2 we show the first aggregation, as a func-

tion of the various parameters previously specified, for the different
datasets. In each box plot, we fix a parameter and represent the
distribution of values for all the other combinations of parameters.

On the left panel, we see that by increasing the half-life, from 1
week to 1 month, the median number of distinct alarms per feature
decreases. This is caused by the drop in the sensitivity of the moving
histograms to sudden changes of feature values for larger half-lives.
The half-life works as a smoothing parameter which controls how
much the system reacts to momentary changes of feature values.

In the middle panel, we observe that increasing the number of
bins reduces the number of alarmed features. In three of the datasets
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Table 1: Summary of each dataset splits, features and average daily transactions.

Features Timespan (months)

Datasets Avg. Daily Tx Total Categorical Numerical Total Reference Streaming

Merchant 1 8.4k 183 6 177 22 10 12
Merchant 2 83.3k 615 183 432 2.5 1.5 1
Payment processor 1 510.8k 272 36 236 12 3 9
Payment processor 2 (public dataset) 3.2k 363 331 32 6 3 3

Figure 2: Relative number of chained alarms (top) and average alarm duration (bottom) per feature as a function of the half-life,
the number of bins and the divergence measure. The various colors encode the various datasets used.

we see a clear drop in the median from 50 to 100 bins, and then a
plateau when increasing to 200. For payment processor 2, however,
there is a minimal change in the distribution of values, because the
dataset is dominated by categorical features, for which the number
of bins is the number of categories.

Finally, on the right panel we observe the effect of using different
divergence measures. Changing from KS to W to JS we observe a
decrease in the number of alarms. It is important to note that, for
categorical variables we always use JS, since it is the one that is
insensitive to ordering, which is usually undefined for categorical
variables. This is also the reason for observing little change when
switching the divergence measure for payment processor 2.

In the bottom of Fig. 2 we show analogous plots for the alarm
duration. In three of the four datasets we observe a reduction or no
change in the median value of the alarm duration as we increase

the half-life. Together with the results presented for the first ag-
gregation, we can infer that in these cases the reduction in the
system’s sensitivity contributes to a lower alarm granularity when
compared to smaller half-lives, i.e., shorter drifts are not detected.
On the other hand, for merchant 1, we observe an increase of the
alarm duration as we increase the half-life. This means that we
have a reduced amount of alarms, however larger in size.

Regarding the remaining two parameters, the number of bins and
the divergencemeasure, we observe similar trends to those obtained
with the number of chained alarms. Increasing the number of bins
(i.e., the resolution) reduces the alarm duration up to the plateau at
100 bins, and changing the divergence measure decreases the alarm
duration for the datasets dominated by numerical features.

6
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4.2 Case Study 1: Merchant Data Anomalies
In this and the next section, we turn to a more granular analysis of
the signals and alarms obtained in specific cases. The FM system
can only be assessed rigorously in drift cases for which we know the
ground truth drift label. These labels are often hard to obtain, since
they may rely on human reporting. For this reason we will focus our
analysis in cases where we could confirm the existence of a drift in
the data. In this section we focus on merchant 1 and two confirmed
anomalies found in its data. Note that, for brevity, we present the
results for a single run of the system with the parameters fixed
to 1-week half-life, 100 bins and Wasserstein distance, since the
results were qualitatively similar across runs.

4.2.1 Spike of Card Registrations. The first issue we discuss was
caused by a spike in card registrations in merchant 1. Ideally, prob-
lems such as this would be detected by directly monitoring the
number of card registrations, however, this feature was not avail-
able to be monitored by the system. Nevertheless, the FM system
still provided an alarm, as it automatically monitors derived fea-
tures that are related to card registrations, which served as proxies.
After consulting with the team in charge of this merchant, we were
able to trace back this alarm to the spike in card registrations, which
the team was unaware of. This is a particularly successful example
where the FM system is able to proactively detect problems without
the need to manually add specific monitoring metrics to the system.

In Fig. 3, on the left, we show the most significant period during
which the spike of card registrations took place. The number of
card registrations is represented by the dashed gray line and the
distribution quantiles of the normalized 𝑝-values of the features
related to the number of card registrations are represented in the
various shades of blue, with their median represented by the deeper
blue line. We see that the 𝑝-values start to decrease as the number
of card registrations increases and their median keeps decreasing
until an alarm is triggered. It then recovers a few days after the
peak in card registrations.

4.2.2 Missing Billing ZIP Codes. The second issuewas caused by an
increase in the number of missing billing ZIP codes. In Fig. 3, on the
right, we observe the normalized 𝑝-values of two features related
to the billing ZIP code (blue and orange lines), which suddenly
decrease below the alarm threshold. After exploring the data, we
found that there was an increase in the number of missing values in
these features during the same period (represented by the dashed
gray line). This issue was only noticed by the team months after it
occurred, whereas the FM system detects it in a few days.

4.3 Case Study 2: Public Dataset Drift Detection
The payment processor 2 dataset is publicly available, which allows
for our analysis to be reproduced. However, we do not have access
to any ground truth information on anomalies or drifts in the data.
Therefore, we follow a simulation approach where we inject what
could be a common anomaly in this type of data.

We start by defining a perturbation, consisting of transforming
some of the transaction amounts from their value in dollars to cents.
This could occur by human or system errors. With this goal in mind,
we applied the conversion from dollars to cents to 10% of the data,

at random, starting 1 month after the beginning of the streaming
period, 𝑡0+1𝑀 , and ending by the end of the second month, 𝑡0+2𝑀 .

Each transaction is linked to a single card. In the dataset the card
id is represented by six features, from card1 to card6. We run the
automatic feature generator over the transaction amount and card
id to create card profiles. These consist of several aggregations used
in the classification of fraudulent transactions, such as the average
amount or the number of transactions per card in a certain period.
In total, we have 26 different features in the final dataset, consisting
of the transaction amount and the generated profiles.

In Fig. 4 we represent the distribution of the transaction amount
using several quantile bands, computed daily, and illustrated in dif-
ferent tones of blue. The solid coloured lines represent the normal-
ized 𝑝-values, for that same variable, for a variety of configurations
of half-lives and divergence measures, whereas the dashed lines
show the normalized 𝑝-values without anomaly injection.

We observe that, as intended, the 𝑝-values start to decrease right
after noise injection starts, and conversely, they start to increase
as soon as it ends. Comparing the various signals, we can see that
the change in the half-life from 1 week to 1 month makes the
system react more slowly. The effect of using different divergence
measures is also noticeable. The JS distance has a lower sensitivity
to changes in numerical data, while KS is the most sensitive. This
higher sensitivity also implies longer alarms, so these parameters
should be carefully selected according to the use case.

Using the same configuration of the previous section, 1-week
half-life, 100 bins and Wasserstein distance, in Fig. 5 we show two
heatmaps representing the normalized 𝑝-values of the various fea-
tures around the period of noise injection (see also [22] for details
on this and other visualizations for the system). On the left(right)
we represent the normalized 𝑝-values without(with) the injection of
the change. Besides observing a drop in the 𝑝-values of the amount
itself we observe the effect of the change in derived features, such as
the average amount or minimum amount. This illustrates how we
can identify the problem in the original feature by observing proxy
features (with unrelated features presenting the least change).

5 RELATEDWORK
Since in this study we monitor the system in real-time without im-
mediate access to labels we focus this section on unsupervised drift
detection methods, i.e., systems that do not distinguish between
real or virtual drift (see reference [16] for a recent review). In this
setting, drift detection amounts to an outlier detection problem.
Blázquez-García et al. reviewed state-of-the-art outlier detection
techniques, focusing on time-series data, and presented a taxonomy
based on the main aspects of each method, [4]. They identify three
properties that define the problem and the associated method:

(1) Type of input data: We focus on multivariate time series.
(2) Type of outliers we seek to find: These can be point, subsequence,

or time-series outliers, where, respectively, a single point, a
portion, or the whole time-series is identified as outlying. We
focus on subsequence methods since we monitor a particular
period of the series in a sliding manner.

(3) Type of method to find such outliers: They can be univariate or
multivariate. Univariate methods only use information from
the time-series of a single feature to predict its outliers. In
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Figure 3: (Left) Distribution of the normalized 𝑝-values of the features related with the number of card registrations. The
median corresponds to the deep blue line and the various shades correspond to 20 evenly spaced quantiles ranging between
0.01 and 0.99. (Right) Normalized 𝑝-values of the features related with the billing ZIP code, in blue and orange. The alarming
threshold corresponds to the red line at the value of 0.01.

Figure 4: Transaction amount distribution values and nor-
malized 𝑝-values for various values of the half-life and di-
vergence. The horizontal red line represents the family-wise
error rate of 0.01, and, the vertical dashed yellow line marks
the transition between the training and monitoring periods.

contrast, multivariate methods can also use information from
several features to predict outliers of a single feature or multiple
features. Our system is based on a multivariate method.

The simplest subsequence monitoring approaches in the litera-
ture are univariate and single signal. They are typically formulated
as a hypothesis test on the distribution of values of a univariate
time-series between a reference window and a target window. Then,
the signal to monitor is related to the 𝑝-value of the observed fluctu-
ation. In Ref. [12] two adjacent sliding windows are used to compare
reference and target at each time step, with a new set of distribution
distance measures providing a significance level as a function of the
number of data instances. In Ref. [28] a combination of the Mood
statistic (to monitor the scale parameter) and the Mann–Whitney
statistic (to monitor the location parameter) into a single moni-
toring statistic is used to avoid the problems of multiple tests. In
Ref. [26] the authors approximate the multinomial distribution of a

stream of values of a categorical feature by using a relative frequen-
cies histogram. Their change detection is based on the Kullback
Leibler (KL) divergence between static and adaptive estimates of the
multinomial densities. They estimate the expected (null hypothesis)
distribution of divergences using Monte Carlo simulations.

Regarding multi-variate methods, most studies focus on mon-
itoring a single signal in order to avoid the problem of multiple
hypotheses. The Information-Theoretic Approach (ITA), [6], com-
pares two adjacent sliding windows, at each time step using the
KL divergence. Relative frequency histograms are used to approxi-
mate the distributions for univariate streams and the partitions of
a kdqTree are the bins for multivariate data streams. In Ref. [29]
(Statistical Change Detection (SCD)) a similar windowing approach
is used, but a density function is estimated by a multidimensional
Kernel Density Estimation (KDE) fitted to the first half of a reference
baseline dataset. This is used to compare the log-likelihoods be-
tween the target and the second half of the baseline dataset, which
is the test statistic. Experiments comparing this method against [6]
showed a superior statistical power and lower computational execu-
tion time. References [14] and [20] leverage Gaussian distribution
based representations of the reference data, respectively using a
Gaussian Mixture Model and an online multivariate Elliptical Enve-
lope clustering of the data into sets of normal data clusters. In the
former, they build a signal from Mahalanobis distances to the test
samples, assuming that they follow a chi-square distribution with
a number of degrees of freedom given by the dimensionality of the
space. For the latter, they build a state tracker that aggregates the
most recent set of events into another Elliptical Envelope cluster
(drift is detected when this is significantly different from existing
clusters). In Ref. [7], the authors propose to use the Isolation Forest
model, [15], to produce scores for each instance in the evaluated
stream, that are then aggregated to detect Concept Drift on a set of
evaluated instances.

Other methods that are also multivariate but focus on point
outliers, rather than monitoring subsequences, may, in principle,
also be adapted to sub-sequence monitoring, [8, 9, 24, 25, 30, 32].
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Figure 5: Normalized 𝑝-values of the various features in the derived dataset before (left) and after (right) injecting noise into
the transaction amount. Left key: “amount” is abbreviated to “amnt” and “standard deviation” to “stdDev”.

Finally, the set of methods that relate most to our approach
are Multivariate Multi-signal based approaches to monitor subse-
quences. In the Computational Intelligence-Based CUSUM test (CI-
CUSUM), [2], the authors propose to extract 12𝐷 +

(𝐷
2
)
features

from the data, inspired on CUmulative SUM (CUSUM) [21] and
Mann–Kendall [11] statistics. A Principal Component Analysis
(PCA) feature extraction is used to select the set of top-𝑘 compo-
nents from the extracted features. In Ref. [27] the authors define
a method that monitors the top-𝑘 components of a PCA transfor-
mation of the input space via Kernel Density Estimation. The PCA
transformation is obtained in the baseline window. The density
functions are obtained for the baseline window and the test win-
dow to compute divergence scores. Finally, in Ref. [1], the authors
propose to use Hierarchical Temporal Memory (HTM) as a fore-
casting model for the dataset evolution. From the forecasts, raw
anomaly scores are obtained by comparing the predictions with the
actual values of the data points, which are then used to build an
anomaly likelihood assuming a normal distribution of raw anomaly
scores. The system can be broken up into multiple independent
HTM models, where the anomaly likelihood is obtained as a joint
probability distribution of the raw anomaly scores of each model
(assumed to be independent).

6 CONCLUSIONS
In this work we presented a (data driven) lightweight system de-
signed to automatically detect drift in data streams. We started
with a detailed formulation of the method, which is based on a
strategy of i) first learning estimates of reference distributions for
all features, together with representations of their normal levels of
fluctuations (Training component), and ii) calculating various sig-
nals online, comparing them to the reference representations and
applying a multivariate statistical test to check for alarms (hence
alerting the user for the emergence of an anomaly in the data).
We then moved on to an empirical study, using four real world
datasets in the domain of credit card fraud detection, where we
first presented an analysis of the system’s alarming sensitivity as

a function of its configurable parameters, followed by illustrative
case studies of alarms detected for various datasets.

Regarding the method, its first stage (Training component) was
designed to be able to tolerate levels of drift as observed in a wide
training period, given a shorter monitoring window size scale. This
is achieved by sampling observation windows, which are used to
construct reference distributions of divergences, per feature, be-
tween the overall training set distributions and the sampled periods.
In the second stage, a p-value signal per feature is computed while
events from the data stream are processed. These are then com-
bined with a multiple hypotheses statistical test, to detect drift
alarms together with an explanation via an importance ranking
of the alarming features. In both stages, feature distributions are
represented by UEMA histograms. Thus, in addition to guiding the
user towards the important features for the alarm, the method is
able to do it with a small constant memory footprint and a small
computational cost (via recursive updates).

As for the experiments, our study of the impact of the various
parameters on the multiple system runs, confirmed the intuition
that larger half-lives produce less alarms and longer alarms, thus
being more appropriate to detect longer term changes. We also
observed that a number of bins equal or larger to 100 provides
enough resolution to stabilize the patterns of alarms. Finally, we
verified that divergence measures that are more suited to numerical
features, such as KS or Wasserstein, are more sensitive to changes
in such types of features than JS (which is more appropriate for
categorical data). In the second part of the experimental study we
presented various examples of alarms triggered and concluded that
the FM system is able to detect data problems without having to
manually add specific metrics to the system to monitor such specific
issues (which would be hard to do because we cannot predict in
advance all possible issues that might occur in the future). This was
both verified for real alarms as well as for synthetically injected
anomalies.

Overall, by applying the feature monitoring system we were able
to capture anomalies, somemore and others less obvious, that would
have otherwise been unnoticed in the data. As expected, as soon
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as the features start presenting deviating patterns and anomalies
we start observing a decrease in their p-values and normalized
counterpart, until finally reaching the alarming state, as expected.

Finally, it is important to observe that the triggering of an alarm
is related to the value of the FWER, which should be carefully
tuned to meet the needs of the application at hand, together with
the monitoring half-life.

Several studies would be interesting to conduct in future work.
The use of a sliding reference period (e.g., 3 months with 1 week
observation "windows") could bring a different useful view of the
system. By applying this approach our method would shift from a
static to a dynamic paradigm, an ever evolving system, capable of
running indefinitely. There are, however, situations where a static
approach presents advantages (or vice versa). In a case where one
trains amachine learningmodel andwants tomonitor shifts relative
to a training period it may be more advantageous to have a static
period. It would also be interesting to perform a more extensive
study of the alarming properties of the system by injecting a richer
(as well as more numerous) array of anomalies in datasets. In such
a study, the goal would be to create a solid ground truth with
many alarms with different durations and characteristics. Then
one could better study the performance of the system and tune
its hyperparameters, e.g., to achieve the best alarm recall given an
allowed level of false positive alarms. Another interesting way to
assess the performance of the FM system would be in a scenario
where the data drift amounts to loss in ML model performance. In
such a scenario it would be interesting to understand if the FM
system provides good alarms to trigger model retraining and if it
would be more effective than periodically retraining the system
(thus saving unnecessary ML model re-training actions).
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