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ABSTRACT

Concept-based explanations aims to fill the model interpretability gap for non-
technical humans-in-the-loop. Previous work has focused on providing concepts for
specific models (e.g, neural networks) or data types (e.g., images), and by either try-
ing to extract concepts from an already trained network or training self-explainable
models through multi-task learning. In this work, we propose ConceptDistil, a
method to bring concept explanations to any black-box classifier using knowledge
distillation. ConceptDistil is decomposed into two components: (1) a concept
model that predicts which domain concepts are present in a given instance, and (2)
a distillation model that tries to mimic the predictions of a black-box model using
the concept model predictions. We validate ConceptDistil in a real world use-case,
showing that it is able to optimize both tasks, bringing concept-explainability to
any black-box model.

1 INTRODUCTION
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Figure 1: ConceptDistil explaining a black-box applied to the fraud detection domain.

Mainstream methods to interpret black-box models produce explanations based on feature-attribution
coefficients (Lundberg & Leel 2017} [Ribeiro et al.,[2016; Sundararajan et al.,|2017). While useful for
a technical persona (e.g., a data scientist), these low-level explanations are difficult to grasp for most
humans-in-the-loop (e.g., medical doctors, fraud analysts). Recently, concept-based explainability
has been a promising line of research in which explanations are based on the importance of high-level
semantic concepts instead of model features.

Previous work on concept-based explainability, such as TCAV or ACE (Kim et al.,|2018}; |Ghorbani
et al.| 2019)), rely on post-hoc learning of concepts and subsequent assessment of their importance for
the prediction of a given class. Although relevant for a global understanding of a model, this family
of methods does not help humans-in-the-loop making individual decisions (e.g., fraud analyst that
discern an individual transaction).

Another family of concept-based explainability methods aims to produce instance-level concept
explanations by changing the model learning itself. These approaches use multi-task learning
consisting of a main classification task and an explainability task (Balayan et al.,[2020; |Koh et al.,
2020; [Li et al.|, 2018} Melis & Jaakkola, 2018} [Nanda et al., [2020). Although promising, these
approaches attain sub-par performance in the main classification task due to known trade-offs in
multi-task learning (Sener & Koltun, 2018)).
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The aforementioned approaches are model-specific as they they assume a structure based on neural
networks (NN). However, for applications that work with tabular data, gradient boosting models
are still quite popular (Borisov et al.|[2021; Shwartz-Ziv & Armon, 2022; Shavitt & Segal, 2018;
Gorishniy et al., 2021} |[Popov et al.,[2019). This urges the need for a concept explainability method
for any type of model.

In this work we propose ConceptDistil, illustrated in Figure[I] which introduces concept explainability
as an independent component without changes to the classification model. It builds a distillation
model that approximates the classifier while also producing concept explanations. The advantages of
this approach are two fold: the classification model maintains its original performance, and concept
explainability becomes model-agnostic, which is crucial in the context of tabular data.

ConceptDistil is divided in two sequential components, a concept model which predicts which domain
concepts are present on a given instance, and an attention-based distillation model that approximates
the predictions of the black-box classifier. The distillation model explains the classifier as a weighted
sum of the concept model’s predictions. This offers two separate explanations types: (1) a data
explanation that lists which concepts are present on a given instance and (2) a classifier explanation
which gives the contributions of each concept to the classification score.

We validate our method in a real-world fraud detection tabular dataset. We show that ConceptDistil is
able to approximate the behaviour of the explained model while still achieving high performance on
the explainability task.

The main contributions of our work are:

* We propose a method for concept explainability that does not compromise classification
performances;

* Our method is model-agnostic which makes it applicable to a wider range of domains;

* Our method provides both data explanations and concept score contributions which corre-
spond to model explanations.

2 CONCEPT-BASED KNOWLEDGE DISTILLATION EXPLAINER

Preliminaries. We frame D as a binary classification task, yp € Yp = {0,1} and C as a black-box
binary classification model of the form C : X — Y, where C(x) = yp, where the random variable
(z,yp) has an unknown joint distribution in X x Y, and gp is the classifier estimate of yp. We
want to explain C by distilling its knowledge into an explainer f that jointly predicts domain concepts
to serve as data explanations as well as the behaviour (score) of the explained model.

We frame our explainer as a multi-task surrogate model with two individual tasks: a knowledge
distillation task, K D, where f learns to approximate the classification scores of the black-box C given
by yxp € Yrxp = [0, 1], and a multi-label classification task, F, with targets yg € Yr = {0, I}K,
where f learns to predict & concepts which serve as the data explanations. We define our explainer
as f : X =» Yg x Ygp, where f(x) = (9r,Uxp) is the (k + 1)-dimensional output vector
of k concept predictions plus the predicted knowledge distillation score. We seek to maximize
the explainer’s performance in both tasks during training. Let Lk p(9xp,C(x)) and LE(YE, yE)
represent the losses incurred by the model at the knowledge distillation and explainability tasks,
respectively. The surrogate explainer model f minimizes the weighted combination of both losses, as
defined by:

Given the inherent fidelity-explainability trade-off, we may assume A € [0, 1] as a hyperparameter to
weight the relative importance of the knowledge distillation task with respect to the explainability
task. A high A allows for a higher fidelity of f to the actual predictions of C at the cost of lower
performance on the explainability task. On the contrary, a low A allows for f to have an higher
explainability performance but at the risk of it being less coupled with the black-box model C. We
show the effect of this parameter on appendix [A.5.1] Depending on the nature of each task, different
loss functions may be used. In this work, we opted for the Binary Cross-Entropy (BCE) loss as the
Lk p and used the mean BCE loss over the K concepts as the L. More formally:

. 1 K (i) (i
Lelie.ye) = > CE@L, yg) @)
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Figure 2: Diagram of ConceptDistil architecture and its main components.

We propose the explainer architecture illustrated in Figure 2] composed by C' feedforward (FF)
layers, parameterized by 8¢, which are shared across all concepts, M x K layers, parameterized by

{05\? }£ | which are concept-specific, and A layers, parameterized by 6 4, which are responsible for
the attention-based distillation task.

The output of the explainability task is § g, which can be divided into K components for each concept
1, of the form: ‘ ‘

95 = h(h(x;00);64)) 3)
Where h(x; @) represents the neurons activation resulting from inputting x into a network param-
eterized by 0. The output of the knowledge distillation task is yxp = ZiK:O Qg) X «;, where
«; represents the attention coefficient for the ¢-th concept, calculated by a simple attention mecha-
nism (Bahdanau et al.,|2014). This attention mechanism is parameterized by 8 4 and receives as input
the same input = as the black-box model and the concept model. The attention coefficients are then
defined as:

a; = softmax(e;, e) “4)
e=h(xz;04) )

Model and Data Explainability. The aforementioned architecture, illustrated on Figure 2} is there-
fore a composition of two models: (1) a concept model, consisting of C' common layers and M x K
concept-specific layers, that predicts which concepts are present on a given input; and (2) a distillation
model, composed of A layers, which, for a given input, attributes attention-based importances to
the predicted concepts in order to obtain the black-box assigned score. Considering the two models,
our method produces two types of explanations which can be provided to users: (1) the concepts
present on a given input, as predicted by the concept model; (2) how much each concept prediction is
relevant to obtain the final black-box model output score.

Task Contamination. One problem that arise from jointly learning ConceptDistil is the problem
of task contamination. This phenomena happens when, to improve the knowledge distillation
task, the gradients force the already correctly learned concept model to degrade its explainability
performance. To erase the possibility of task contamination we propose an alternative, named
ConceptDistil — No gradient, where the propagation of gradients back from the attention mechanism
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into the concept model is blocked. This allows ConceptDistil to separate the knowledge distillation
and the explainability tasks while training. We further propose another alternative to overcome
task contamination, dubbed as ConceptDistil — 2-staged, where we train the two components of
ConceptDistil in separate stages. In this training framework, the concept model is trained on the
concept labels, and only after is the distillation model trained using as inputs the predictions of the
already trained concept model.

3 EXPERIMENTAL SETUP

We validate our method in real world financial fraud detection application where the data is typically
in the tabular form. In our use-case, predictive performance is often the single metric of interest.
Therefore, it is crucial to deploy the model with maximum performance. Thus, we ran an experiment
(details in Appendix to find models with higher performance for the predictive task. Therefore,
we decided to evaluate our ConceptDistil approaches using the best LightGBM and FeedForward
Neural Network (FFNN) models as the base classifiers.

Dataset. For our experiments, we used a privately held online retailer fraud detection dataset,
comprised of approximately 5.5M transactions where 2% represent fraudulent behaviour. The dataset
is then divided into three sequential subsets: train, validation and test, composed of 4.8M, 200k and
1M instances respectively. Because our goal is model explainability, we created a sample of the
transactions which would most likely need to be explained, containing the transactions of highest
uncertainty for the historical fraud detection system. This sample resulted in 460k instances for
training, 17k for validation and 107k for test. Our ConceptDistil models were trained and tested using
these sampled datasets.

Golden Concept Labels. To evaluate our explainability task, we randomly sampled a small set from
the sampled dataset, and presented those transactions to a group of human experts (fraud analysts
with the knowledge of the most common fraud patterns latent on this online retailer dataset). We
then asked the fraud analysts to annotate the existing concepts on each transaction. We present more
details about this golden concept dataset in Appendix Section[A.2)]

Concept Weak Supervision. To train our explainability models using the full and sampled datasets
we employed a weak supervision methodology. This consisted of creating a set of Concept Teachers
of the form f : X — Y trained using a small golden training set with concept labels obtained with
the method described above. The Concept Teachers were then used to infer the probabilistic labels

p(yg) |&) of the concept i being present in transaction . Our explainability models were trained
using these probabilistic labels as targets. We further detail how we developed our Concept Teachers
in the Appendix Section[A.3]

Hyperparameter Optimization. We selected the best hyperparameters using a Tree-structured
Parzen Estimator (TPE) (Bergstra et al.,[201 1)) optimization of 50 trials for each variant. We further
detail the hyperparameters in appendix

Evaluation Metrics. To evaluate the knowledge distillation task we used a measure of fidelity
derived from the Mean Absolute Error (MAE) given by:
no () (@)

Fidelity = 1~ MAE = 1 - 2i=1 \ny Vol ©)
where n is the total number of instances in the evaluation set. Because our knowledge distillation
task approximates a classification score between 0 and 1, we can also see that this measure is always
within the same interval. To evaluate the explainability task, because we do not wish to focus on any
specific range of False Positive Rate (FPR), we measure the area under the ROC curve (ROC AUC)
of each individual concept. We then take the average of these measures across concepts to obtain a
single evaluation measure for the explainability task. The explainability task evaluation is performed
on the small golden set of human-annotated concept labels.

4 RESULTS

In total, we trained around 1600 models, and summarized the obtained results in the Table [}
Along with our ConceptDistil models, we created 2 baseline models which help us understand the
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performance bounds on the two individual tasks. We detail an implementation for those baselines in
appendix [A.6]

The results of Table [I]show a clear difference in distillation performance between the two black-box
classifiers used. The fidelity performance achieved when distilling the FFNN model is higher for all
surrogate architectures tested. We believe that the distillation of the FFNN is a simpler task when
compared with the distillation of LightGBM due to the similarity of inductive biases between the
FFNN classifier and the surrogate architectures.

Baselines comparison. We can see in Table ]| that our best Distillation baseline achieved 93.31%
fidelity when distilling the LightGBM classifier and 98.44% when distilling the FFNN classifier,
which is superior to the best fidelity obtained by ConceptDistil explainers (91.43% for LightGBM
and 97.10% for FFNN), showing approximately a 1.9 and 1.3 percentage points (pp) gap in fidelity
for the LightGBM and FFNN distillation, respectively. The biggest gap in fidelity (approximately 6.1
pp) occurred for the ConceptDistil — 2-staged when distilling the LightGBM classifier. In terms of the
explainability baseline, the best model attains 78.12% of mean ROC AUC. Since the ConceptDistil —
2-staged uses this explainability baseline as its own data explainer, its explainability performance is
the same as the baseline. In contrast, for jointly learned ConceptDistil models, there is a drop of 1.6
pp and 1 pp in explainability performance when distilling LightGBM and FFNN, respectively. These
results confirm the existence of a trade-off between knowledge distillation and explainability tasks
since both single-task baselines outperform the proposed multi-task approaches.

Table 1: Performance comparison between different concept-based knowledge distillation explainers.

LightGBM FFNN
Fidelity Mean Fidelity Mean
(%) ROC AUC (%) (%) ROC AUC (%)

Baselines Distillation Model 93.31 - 98.44 -
Explainability Model - 78.12 - 78.12
Default 91.43 76.43 97.10 77.16
ConceptDistill 2-staged 88.07 78.12 94.73 78.12
No gradient 87.20 76.28 95.26 77.58

ConceptDistil — 2-staged vs ConceptDistil — No gradient. When comparing the results of these
variants, we see that, when distilling the LightGBM, the No gradient variant performs worse than the
2-staged on both tasks. When distilling the FFNN, the No gradient achieves better distillation but
worse explainability which corresponds to a softer trade-of between distillation and explainability
than the 2-staged.

ConceptDistil — 2-staged/No gradient vs ConceptDistil. When comparing 2-staged and No gradi-
ent variants with the vanilla ConceptDistil, we see that the 2-staged achieves higher explainability
performance while vanilla ConceptDistil attains better fidelity when distilling the LightGBM model.
For the FFNN, vanilla ConceptDistil attains better fidelity, without much sacrifice in explainability
performance (0.96 pp loss).

5 CONCLUSION

We present ConceptDistil, a concept-based knowledge distillation method that provides both data and
model explanations. ConceptDistil uses a surrogate neural network that approximates the predictions
of a black-box classifier while simultaneously producing concept explanations. As our method
operates independently from the black-box model, it is model-agnostic and does not compromise the
classification task performance. We validated ConceptDistil on a privately held real-world online
retailer fraud detection dataset, and showed that ConceptDistil can learn both the explainability and
the distillation tasks.
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A APPENDIX

A.1 PREDICTIVE PERFORMANCE ON REAL WORLD FINANCIAL CRIME DATASET

We ran experiments using private real-world online retailer fraud detection dataset that contains
approximately 5.5M transactions. This dataset is highly unbalanced, with only 2% of transactions
being fraudulent. We used TPE as optimization algorithm, running 50 iterations for each model
type. To evaluate the performance of models on the classification task (fraud task) we consider the
True Positive Rate (TPR) (or Recall), at 5% FPR. This percentage of FPR (5%) were picked due
the business constrains defined by online retailer, minimizing the probability to harm an legitimate
customer. The fraud performance evaluations were done using the full test dataset (not sampled)
since we don’t want to focus solely on the subset of transactions which require good explanations (FP,
FN, uncertain) but instead on the whole set of transaction upon which the fraud model would take an
approve/decline/review decision. The results for the best model of each type are presented in Table 2]

Table 2: Performance comparison between gradient-boosting-based, FFNN, and self-explainable
models ((Balayan et al.,[2020; |Koh et al.} 2020)).

Model Recall at 5% FPR (%) Out-of-the-box explanations
LightGBM 68.31 Feature Importance Attributions
FFNN 65.55 -

Self-explainable 60.59 Concepts (through Concept bottleneck)

As already mentioned in section [T} there are several studies which show that Deep Learning models
struggle to outperform gradient-boosting-based models in tabular data. In this specific fraud detection
use-case, we corroborate this finding with LightGBM model (Ke et al.l [2017)) achieving 68.31%
recall at the 5% FPR level, while FFNN achieved 65.55% recall at 5% FPR. Additionally, we tested
a concept self-explainable model (Balayan et al.| [2020; |Koh et al.l [2020), which achieved worse
performance than both the best LighGBM and the FENN, achieving 60.59% recall at 5% FPR. In this
work, we test our ConceptDistil approaches using the best LightGBM and FFNN models as the base
classifiers.

A.2 CONCEPT GOLDEN DATASET

In section 3| we briefly describe the golden dataset of concepts that we use in our experiments. This
dataset was obtained by collecting concept annotations in a total of 2643 transactions. These were
further split into 1934 for training the Concept Teachers, 203 for the optimization of the teachers’
parameters using TPE, and 506 for test. This last set was the one used to evaluate the explainability
performance of the Concept Teachers and all ConceptDistil models and baselines presented. Despite
the requirement for having concept labels being a limitation in this work, we can see that the effort
of concept labelling can be mitigated by resourcing to a weak supervision strategy as the one used.
We reduce the labeling effort in more than 3 orders of magnitude when compared to the effort of
fully labeling the sampled dataset of around 500k transactions. Additionally, and despite the effort
drawbacks, we consider that concept explainability can benefit from being establishing with ground
truth concepts obtained from expert knowledge instead of unsupervised methodologies which can
more easily result in meaningless concept definitions.
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A.3 CONCEPT TEACHERS

As described in section [3|our Weakly Supervised Concept Labeling consisted in learning a set of
Concept Teachers, which generated concept labels for all the remaining unlabeled transactions in the
full and sampled datasets. To train the Concept Teachers we used the golden dataset enriched not
only with the fraud features available at run-time but also with some additional information, such
as fraud rule triggers and manual decisions, which is only generated during or after the historical
fraud decision. The algorithm used for the Concept Teachers was a Random Forest classifier and
the hyperparameters were optimized using a Tree-structured Parzen Estimator (TPE) (Bergstra et al.,
2011) algorithm with 200 trials from which 30 trails were used for a random initialization. As the
optimization metric we used ROC AUC on the golden validation set. We then evaluated the Concept
Teachers in the test set of our golden dataset obtaining a mean ROC AUC of 75.72% across all
concepts. Despite not being central to our work, the Concept Teachers performance shows and
interesting result when compared to the 78.12% performance of our concept explainabilty baseline.
This 2.4 pp improvement originates solely from the using more data in X (the concept explainability
baselin trained in 460k instances labeled by our Concept Teachers) which illustrates that our weak
supervision approach is successful to some degree.

A.4 CONCEPT PREVALENCES

To provide more context about the concepts considered in this work for the Fraud Detection, we show
in Table 3] the list of concepts as well as their prevalences on the golden dataset (Concept Teachers
training data plus the golden test set).

Table 3: Concepts for the Fraud Detection use-case and corresponding prevalences on the golden
dataset. The table shows the global prevalence and the prevalences conditioned on fraud classification
labels (legit and fraud).

Concept Global (%) Legit (%) Fraud (%)
Good Customer History 24.45 27.85 14.29
High Speed Orderning 11.33 8.49 19.84
Suspicious Delivery 22.86 20.16 30.95
Suspicious Device 11.73 8.75 20.63
Suspicious Email 21.07 18.93 30.16
Suspicious Items 18.49 17.24 22.22

A.5 HYPERPARAMETER SEARCH

For the hyperparameter optimization, we varied the number of C' layers between 3 and 5, the number
of M layers between [3, 7] and the number of A layers between 1 and 4 as well as their respective
layer dimensions between 2 and 2048. We let our loss trade-off parameter A vary between 0.2 and
0.8, and the learning rate vary between 0.0005 and 0.01. As regularization, we let all hidden layers
dropout probabilities vary between 0 and 0.4, the 12 weight penalization parameter vary between 0
and 0.1 and let the optimizer select whether to use or not Batch Normalization (loffe & Szegedy,
2015).

A.5.1 EFFECT OF \

To understand the effect of the A\ parameter used in the loss function (equation [I), we ran an
experiment where we test jointly learning ConceptDistil on best LightGBM model (A.I)) with same
hyperparameter space described in previous paragraph, with small difference for A that now vary
between [0, 1]. Instead of using TPE for hyperparameter optimization which may be biased due to its
sequential optimization approach, we opt for random search. In total we trained around 400 models,
and present the result on figure

By analysing the bottom left area of the figure [3| (absolute fidelity higher than 85%), we observe that
higher values of ), close to 1, lead to higher performance on Knowledge Distillation task. On the
contrary, the top left area (Mean ROC AUC higher than 70%) is mainly populated with models that
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Figure 3: The effect of A parameter on Absolute fidelity (Knowledge Distillation task) and Mean
ROC AUC (Explainability task). Bigger size points are on the Pareto frontier [Pareto| (1906).

have small lambda values (close to 0). Thus, these models have higher weight on Explainability task,
leading to better Mean ROC AUC values, but sacrificing absolute fidelity. The models that have a A,
values closed to 0.5, seems to achieve the better trade-off between two tasks, and are dominant on the
Pareto frontier.

A.6 BASELINES

We develop two baseline models that are specialized on two individual tasks (explainability and
distillation).

Concept Explainabilty Baseline. Our first baseline is a model with the architecture of the concept
model from ConceptDistil which, given an input &, predicts the probability p(yg|x). When evaluated
on the golden test set, this model gives us an upper bound of the explainability performance. Addi-
tionally, the best model obtained for the concept model baseline is the one used for the ConceptDistil
— 2-staged.

Knowledge Distillation baseline The second baseline model is a standard surrogate (dubbed as
Distillation baseline) which, given an input @, predicts the output of the black-box classifier yx p.
This standard surrogate has a multi-layer FENN architecture where the number of layers were varied
between 4 and 9 and the layer dimensions were varied between 2 and 4096. When evaluated on the
sampled test set, this standard surrogate model gives us an upper bound for the knowledge distillation
task performance.

The hyperparameters of both baseline models were optimized using the same methodology and ranges
described in appendix [A.5]
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