
Active learning for imbalanced data under cold start
Ricardo Barata

ricardo.barata@feedzai.com

Feedzai

Miguel Leite
∗

miguel.leite@feedzai.com

Feedzai

Ricardo Pacheco
∗

rjgpacheco@gmail.com

Feedzai

Marco O. P. Sampaio

marco.sampaio@feedzai.com

Feedzai

João Tiago Ascensão

joao.ascensao@feedzai.com

Feedzai

Pedro Bizarro

pedro.bizarro@feedzai.com

Feedzai

ABSTRACT
Modern systems that rely on Machine Learning (ML) for predic-

tive modelling, may suffer from the cold-start problem: supervised

models work well but, initially, there are no labels, which are costly

or slow to obtain. This problem is even worse in imbalanced data

scenarios, where labels of the positive class take longer to accu-

mulate. We propose an Active Learning (AL) system for datasets

with orders of magnitude of class imbalance, in a cold start stream-

ing scenario. We present a computationally efficient Outlier-based

Discriminative AL approach (ODAL) and design a novel 3-stage

sequence of AL labeling policies where ODAL is used as warm-up.

Then, we perform empirical studies in four real world datasets, with

various magnitudes of class imbalance. The results show that our

method can more quickly reach a high performance model than

standard AL policies without ODAL warm-up. Its observed gains

over random sampling can reach 80% and be competitive with poli-

cies with an unlimited annotation budget or additional historical

data (using just 2% to 10% of the labels).

CCS CONCEPTS
• Computing methodologies → Active learning settings; Su-
pervised learning by classification; Online learning settings;

KEYWORDS
active learning, data streams, cold start, high class imbalance

ACM Reference Format:
Ricardo Barata, Miguel Leite, Ricardo Pacheco, Marco O. P. Sampaio, João

Tiago Ascensão, and Pedro Bizarro. 2021. Active learning for imbalanced

data under cold start. In Proceedings of ACM International Conference on AI
in Finance, Nov 2021. ACM, New York, NY, USA, 9 pages.

1 INTRODUCTION
Training high performance supervisedMachine Learning (ML)mod-

els is currently an essential and widespread task in the digital do-

main, where vast amounts of data are generated daily in numerous

∗
Work developed while employed at Feedzai.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICAIF ’21, November 3–5, 2021, Online
© 2021 Association for Computing Machinery.

Figure 1: Schematics of the AL loop (left) and model perfor-
mance evolution (right) depending on the AL policy.

applications (e.g., finance, entertainment or consumer goods ser-

vices). Those models are often central in decisions that enhance

system efficiency, user experience or even safety and they rely

heavily on collecting high quality labeled data. In many use cases,

labeled data is initially absent (cold start) and expensive to collect,

often requiring human annotation under a limited budget, while

it is common that the system collects large amounts of unlabeled

data. Thus, as data arrives and accumulates in the system, it be-

comes essential to select the most informative samples for labeling

to quickly be able to train a high performance ML model – this is

the goal of Active Learning (AL), as represented in Figure 1.

In this paper, we propose an AL-based annotation method for

real-time data streams with a large class imbalance, to train a high

performance model in a cold start scenario. We perform an ex-

tensive empirical study using real world datasets of credit card

transactions where the ML task is to detect fraudulent transactions.

AL is especially relevant in this domain, since there is, usually, a

considerable delay between the fraudulent event and the collection

of the label (e.g., through client complaints or reports from finan-

cial institutions) unless a human analyst is consulted. We test well

known AL policies, as well as our proposed sequences of policies

that are especially designed for imbalanced datasets, to achieve a

high performance, with reduced variance, in few iterations. Our

main contributions are:

• A new computationally efficient approach to the Discriminative

Active Learning method [6] named Outlier based Discriminative

Active Learning (ODAL) – Section 2.2.2.

• Two variations of uncertainty sampling policies using an epis-

temic uncertainty measure, as well as a measure based on the

fraud rate percentile – Section 2.2.3.

• A3-stage sequence of policies suited to highly imbalanced datasets,

using ODAL in the second stage (warm-up policy) – Section 2.2.4.

• An extensive set of experiments to identify the best AL setup for

fraud detection on four real world datasets – Section 4.

1

ICAIF ’21, November 3–5, 2021, Online Barata, et al.

3. Train Model

Data

Data Stream

Unlabeled
Pool

Labeled
Pool

1. Select Instances

Current
Policy
Current

Switching
Criterion

2. Label the
selected instances

Fetch Data

Send
Labels

Fetch Data

Fetch DataPolicy 1

Policy 2

(...)

Switching Criterion1

Switching Criterion2

Policy 3

Get Next Batch

AL LOOP

Process Startup

Fetch
Initial Data

Automatic Feature Engineering

Unsupervised Feature Selection

Fetch
Schema

Figure 2: Experimental framework architecture overview.

2 METHODS
In this section we present the use case we will study in our experi-

ments together with a description of the methods tested. Our basic

problem consists of prioritizing instances from a growing unlabeled

pool of data in a streaming environment for labeling (pool based

sampling [18]) using AL. The number of instances in one labeling

query request (henceforth query), i.e., the batch size, is a parameter

that may influence how fast AL improves the ML model trained

with the collected labels. We focus on a realistic streaming data

cold start scenario, where initially, there is no labeled or unlabeled

data available but rapidly unlabeled data accumulates. In particular,

when AL selects a batch of queries for labeling, at a given iteration,

more unlabeled data will be available than on previous iterations.

With this streaming data setup inmind, we present an illustrative

diagram of the architecture of our full framework in Figure 2 that

will serve as reference when explaining the methods we developed.

Its main components are:

• DataComponents: This contains aData Stream collecting events

in real time and storing them in the Unlabeled pool. The Labeled
pool stores labeled data. Both pools start empty.

• Process Startup: This is responsible for training pre-processing
pipelines, enriching the raw incoming data stream with features

and applying feature selection and/or dimensionality reduction.

• AL loop: This iteratively collects labels and trains the model. At

each step the Data is accessed and manipulated as follows:

(1) Select Instances: A batch of unlabeled events is selected by the

currently active policy for querying. An arbitrary sequence

of AL policies chained together with switching criteria is

possible (left of block 1), though in our experiments we only

consider up to 3-stage sequences.

(2) Label Instances: Here we simply move the instances selected

for labeling from the Unlabeled to the Labeled pool and reveal

their label (our data sources contain the true label). In a live

system, analysts would provide the labels.

(3) Train Model: The labeled data is used to train and evaluate

the ML model. We continuously iterate this loop up to a

maximum fixed duration (e.g., until a fixed number of labels

is collected). Since we use historical data to simulate the data

Cold stage Warmup stage Hot stage

Baseline QueryAll – –

1-stage

OutlierDetect – –

Random – –

2-stage

Random – Unc. (entropy)

Random – ODAL

Random – EMC

Random – QBC

3-stage

Random ODAL Unc. (entropy)

Random ODAL Unc. (epistemic)

Random ODAL Unc. (percentile)

Random ODAL QBC

Random ODAL EMC

Table 1: Policy sequences tested in experiments.

stream, we can evaluate the sequence of AL models, obtained

while iterating (Figure 1), on a separate test set – see Section 3.

2.1 Startup and preprocessing
In a cold start scenario wemay not know, in advance, which features

are useful to predict the target. Thus, we apply a minimal prepro-

cessing depending only on the schema of the data fields collected

by the system. The transformations applied are now described.

Automatic Feature Engineering:Weuse Feedzai’s AutoML tool [12],

which generates a feature engineering plan based only on raw data

fields. This only requires a file specifying, e.g., grouping entities,

numerical fields, or the semantics of fields to be used in pre-defined

types of feature engineering operations, together with a specifica-

tion of window durations to compute profile feature aggregations

(e.g., count of transactions per card in the last hour).

Unsupervised Feature Selection: From both a data science and

system performance perspective it is useful to discard redundant or

noise features produced by AutoML. We use Principal Component
Analysis (PCA) [23] to reduce the dimensionality of the numerical

features space by selecting the top principal components that ex-

plain a fraction of the variance in the data. This method requires a

sample of unlabeled data, which can be easily collected through an

initial waiting period (e.g., we use one day in our experiments).

2.2 Policies
The central ingredient in an AL based annotation system is the

policy determining which instances are the most relevant to label.

We categorize the types of policies tomirror our three-stage strategy

to efficiently train a model from cold start:

(1) Cold policies (unsupervised): In a first stage, while no labeled

data is available, a method is used to select the first instances

for labeling before supervised AL can start – Section 2.2.1.

(2) Warm-up policies: After some labels are collected, there may

be a transient period with only labels of a given type available

(e.g., only negative class for binary classification) or too few

labels to train a supervised policy – Section 2.2.2.

(3) Hot policies (supervised): These are the most common, and

they make full use of the collected labels to differentiate classes

and select the best instances to query – Section 2.2.3.

2

Active learning for imbalanced data under cold start ICAIF ’21, November 3–5, 2021, Online

Next we discuss our choices for each stage. The combinations used

in our experiments are summarized in Table 1.

2.2.1 Cold policies: AL studies in the literature often assume that

a labeled pool is available to start the AL process. However, in

many real world scenarios one may be faced with a system that

has just been deployed and contains no labeled data [7]. Then, the

initial sampling can only be guided by unlabeled instances. The

simplest choice is to randomly sample an initial batch of instances

– Random Policy. Another simple option is to use an unsupervised

learning method to build a representation of the unlabeled data

and select outliers – Outlier Detection Policy – which is useful if

one or more of the classes behave as outliers. We test, as 1-stage

baselines (Table 1), the Random policy as well as anOutlier Detection
Policy consisting of an isolation forest [11] trained on the unlabeled

pool. The isolation score is used to rank the unlabeled transactions

from most outlier-like (to query) to most inlier-like. Experiments

using this method will be identified with the tag OutlierDetect.
Cold policies are also baselines for AL if used alone (i.e., one-stage

sequence experiments).

2.2.2 Warm-up policies & ODAL. Regarding warm-up we propose

a new method, Outlier Discriminative Active Learning (ODAL), that

provides a computationally lighter approach to Discriminative Ac-
tive Learning (DAL) [6]. The latter is based on the principle that

a good labeled pool should be difficult to discriminate from the

unlabeled pool. In this approach, a binary classification model is fit

to discriminate between pools, then the unlabeled pool is scored

and instances that are easy to discriminate from the labeled pool are

queried. This can be computationally heavy because it always trains

on all available data (labeled and unlabeled). In ODAL we propose,

instead, to train an outlier detection algorithm on the labeled pool,

and use the obtained model to score the unlabeled pool and find the

greatest outliers relative to the labeled pool. Those instances are

then queried for labeling. In typical AL scenarios the labeled pool is

much smaller than the unlabeled pool, so ODAL can be trained on

the labeled pool only, in contrast with DAL. Another advantage of

ODAL over DAL is observed by expanding the DAL score, 𝑝 (0|𝑥),
for an instance with features 𝑥 to be in the unlabeled pool (0) using

Bayes theorem (assuming a probabilistic discriminator):

𝑝 (0|𝑥) = 𝑝 (𝑥 |0)𝑝 (0)
𝑝 (𝑥 |0)𝑝 (0) + 𝑝 (𝑥 |1)𝑝 (1) =

(
1 + 𝑝 (𝑥 |1)𝑝 (1)

𝑝 (𝑥 |0)𝑝 (0)

)−1
. (1)

Here 𝑝 (𝑥 |0), 𝑝 (𝑥 |1) are, respectively, the distributions of the unla-
beled and labeled pools and 𝑝 (1) = 1−𝑝 (0) is the fraction of labeled
data. In Eq. (1) we see that the DAL score is high for instances with

a low density ratio, 𝑝 (𝑥 |1)/𝑝 (𝑥 |0), between the labeled and unla-

beled pool, which may not be desirable if the labeled pool is missing

examples in lower density regions of the unlabeled pool. On the

other hand ODAL only models 𝑝 (𝑥 |1) so it favours, by design, that

the instances to be selected are not well represented in the labeled

pool regardless of how well they are represented in the unlabeled

pool. For problems with a large class imbalance this is especially im-

portant. Thus, ODAL is both computationally feasible for our large

scale experiments and less biased by the unlabeled data distribution.

We will see in Section 4, that ODAL warm-up adds an early boost

to the learning curves in imbalanced datasets. In the experiments,

we will use an isolation forest outlier detection algorithm. Thus,

the labeled pool instances will be ranked by isolation score and the

ones ranking high are selected for labeling.

Within warm-up policies, there is another class of methods de-

noted Density-weighted that aim to select instances to cover well

the most dense areas of the data distribution [5, 14, 24]. These

methods tend to be heavier and harder to implement in streaming,

because the unlabeled pool may grow and its distribution may drift

in real-time, so we leave them out of our experiments.

2.2.3 Hot policies. We now describe the supervised policies.

Uncertainty Sampling: This is the most common active learning

technique, originally discussed by Lewis and Gale [10]. It trains

a machine learning model on each AL iteration using the labeled

pool instances. Then the unlabeled pool is scored and the instances

are ranked by a measure of uncertainty related to the distance to

the classification boundary. Instances closer to the classification

boundary are assumed to be more likely to improve the model. A

common criterion is to select instances with the highest expected

entropy over the possible class labels given the model scores as the

probabilities. For binary classification those instances have scores

closest to 0.5. This method assumes scores that are well calibrated

probabilities, which may not hold. Despite studies showing that it

is an efficient AL uncertainty measure ([25] and references therein),

the calibration assumption may not work for many algorithms and

it can be especially bad for high class imbalance [16].

We introduce an alternative for binary classification, that does

not require score calibration. We first observe that the score func-

tion of most ML algorithms is a monotonic function of the class pos-

terior probability. Thus we still expect that instances with higher

scores will have a higher probability of being positive. Given a

sample of data, the classification boundary can be equivalently

characterized by a score percentile, i.e., a position in the sorted

set of scores. We then note that the percentile of the classification

boundary, for a perfect classifier that knows the labels would be

equal to the negative class rate. This motivates an alternative uncer-

tainty criterion, where the uncertain instances are the ones closest

to the estimated negative class rate boundary. In the experiments,

we will show results with the classic entropy criterion (denoted Unc.
(entropy)), as well as with our fraud percentile criterion (denoted

Unc. (percentile)).
Expected variance Reduction and Epistemic Uncertainty: The ex-

pected variance reduction method estimates the variance of the

model predictions [4]. This is tightly related to the notion of epis-

temic uncertainty discussed in the literature [21]. Epistemic un-

certainty is the reducible part of the total uncertainty composed

of i) the model uncertainty (or bias), plus ii) the approximation

uncertainty (variance). The remaining uncertainty (also know as

aleatoric) is intrinsic to the data generating process and can never be

removed. The standard uncertainty sampling criterion using the en-

tropy of the model scores is precisely the total uncertainty criterion.

The epistemic uncertainty, being the difference between the total

and aleatoric uncertainty, may give a better measure of uncertainty

for AL, because it is only sensitive to the reducible components.

Though it still contains the uncertainty from the bias, it can be

more tractable than variance estimates, which often rely on ana-

lytic expressions assuming differentiability. In our analysis, we train

models using a random forest classifier. This is non-differentiable

3

ICAIF ’21, November 3–5, 2021, Online Barata, et al.

but it offers a convenient way of controlling regularization, using

a large number of shallow trees, which is important to train on

small labeled pools. The epistemic uncertainty for random forests

is estimated from the outputs of each tree, [21]. In our experimens,

we denote the epistemic uncertainty criterion by Unc. (epistemic).
Query By Committee (QBC): Query by committee [20], is a simple

but potentially computationally heavier method that combines

knowledge from an ensemble of ML models, chosen by the user,

where eachmodel in the ensemble is trained on the labeled data pool

and used to score the unlabeled data. A measure of disagreement

among themodels is computed for each instance based on themodel

scores. Instances rank higher for higher disagreement. Often, it also

assumes that the scores are well calibrated probabilities. Thus, here

we introduce an alternative measure of disagreement, among the

models in the committee, that is insensitive to whether or not the

scores output by each model are calibrated as probabilities. This

can be important if the committee contains a mixture of models

with and without a probabilistic outcome. For each model in the

committee, we rank the unlabeled instances by descending model

score and compute the average pairwise absolute difference of ranks

between any two models. Instances on which the models disagree

will have very different rankings across models.

Expected Model Change (EMC): The basic principle of this method

[19] is to query the instance that is expected to change the model

the most. We use the simplest approach in the literature where: i) a

gradient-based classifier is trained on the labeled data pool, ii) for

each unlabeled instance, the expected gradient norm for the given

instance is computed assuming that the model parameters are near

an optimum of the model’s loss function and, iii) the unlabeled

pool instances are ranked so that instances with larger expected

gradient are prioritized. A related method that is often impractical is

Expected Error Reduction [17], which requires retraining the model

for all label assignments for each possible query.

2.2.4 Policy Sequences. In addition to the AL policy sequences

displayed in Table 1 we also add a baseline denoted QueryAll cor-
responding to unbounded labeling resources where all incoming

transactions are labeled. In the 2-stage sequences we switch poli-

cies after we have at least one label from each class. Regarding the

3-stage sequences, the same criterion is used to switch between

warm-up and hot policy, however, the switch to the warm-up policy
from the cold policy is done after the first batch is collected with

the cold policy, to start exploiting ODAL immediately.

3 EXPERIMENTS
In this section we present results of experiments with several real

world credit card fraud datasets.

3.1 Policy Parameters
We make the following choices for the various policies in the ex-

periments. In all policies that require an isolation forest we use

the scikit-learn [15] implementation with 100 trees, using all

features to grow each tree, and a maximum number of samples

per tree which is the minimum between 256 and the total number

of samples. For QBC we use a committee with: a Random Forest

with 100 trees and maximum depths of 3, an L2 regularized Logis-

tic Regression, a Gaussian naive Bayes classifier, and a Gradient

Dataset Positive class rate Sampling fraction

Bank 1 ∼ 10
−4

11.0 %

Bank 2 ∼ 10
−3

3.0 %

Payment Processor ∼ 10
−2

2.5 %

Merchant ∼ 10
−2

100.0 %

Table 2: Dataset properties:Due to privacy reasons we do not
provide further details (see detailed description in text).

Boosting Classifier with 100 estimators.
1
For EMC we use a logistic

regression with L2 regularization.

As for the batch size, we use 100 for all policies. In preliminary

experiments with smaller batch sizes we did not see substantial

improvements, while larger sizes degrade the results.

3.2 Data preparation
We cover several representative use cases in the fraud detection do-

main, namely card issuing banks (Banking), platforms that process

online payments for several merchants (Payment Processors) and

single merchant online platforms (Merchants).

In Table 2 we provide some properties of each data set, which

contain fraudulent (positive) and legitimate (negative) transactions.

The fraud rates span several orders of magnitude, from an extremely

large imbalance (Bank 1), to moderate imbalances of a few percent.

The datasets contain raw fields collected when transactions ar-

rived to a fraud detection system in real-time, including the mone-

tary amount of the transaction, the timestamp of the event, several

identifiers (e.g., card ID), categorical fields and the fraud label.

The volume of transactions varies across datasets from a few

millions to several hundreds of million per year. To speed up our

experiments, we applied undersampling to reduce the volume to

a manageable (and similar) level for all datasets. This allowed us

to scale up our experiments to cover many different types of poli-

cies and to perform a more extensive Temporal Cross Validation

(TCV) over a longer period. We applied the sampling before fea-

ture engineering to speed up the preprocessing. Fraudulent and

non-fraudulent card id entities were randomly sampled separately

with the sampling rate indicated in Table 2 (this preserves the fraud

rate) and all transactions were kept for each sampled card id. This

keeps complete card histories, allowing to compute sliding window

profiles that are important to characterize the event [1].

We applied automatic feature engineering, which generated be-

tween 600 and 800 features depending on the dataset – see Sec-

tion 2.1. The categorical fields were encoded both with ordinal

and frequency encoding and standardized to zero mean and unit

variance similarly to other numerical features. The remaining pre-

processing is scenario specific – details provided in Section 3.3.

3.3 Experimental Setup
In this section we describe details of the experimental setup that

are common to all data sets.

3.3.1 Data slicing. In Figure 3 we present a diagram of the various

slices of data for any given data set. We define Folds, which consist

of 8 week periods (two pairs of 4 weeks). Within each fold, the first

4 weeks (green), are used for model training, whereas the following

1
We use scikit-learn [15] implementations for all mentioned MLmodels unless stated

otherwise. For the unspecified hyper-parameters we use the library defaults.

4

Active learning for imbalanced data under cold start ICAIF ’21, November 3–5, 2021, Online

Test 1

Fold 1 Test 2

Train 1 Fold 2 Test 3

Train 2 Fold 3 Test 4

Train 3 Fold 4 Test 5

Train 4 Fold 5

1 week Train 5

Figure 3: Time folds for the five simulation periods in the
experiments (see detailed description in the text).

4 weeks (blue), are for model evaluations. The Train period is used

differently according to the type of experimental run.

3.3.2 AL scenario and baselines. Here we describe the details of
data preprocessing pipeline preparation and training periods.

AL in streaming. This case mimics a scenario where the AL system is

deployed for the first time in streaming without access to previous

data. Since the goal is to collect labels quickly to obtain a good

model, without waiting for labels to arrive by other means, applying

AL is typically relevant for a few weeks. Thus, we only reserve the

two last weeks of the Train periods (darker green: weeks 3 and 4)

to sample data with AL for training (weeks 1 and 2 are used for

the strong optimistic baseline discussed next). The Test sets allows
us to measure the model performance after the deployment of the

last AL model. In practice, for most data sets we only use one week

for AL training (except for Bank 1 which, due to the extreme class

imbalance, needs a longer period for the performance to stabilize).

Optimistic Baseline. Here we train a strong model that has access

to all Train data and labels (weeks 1 to 4: light plus dark green). The
goal is to obtain a “best case scenario” upper bound performance.

3.3.3 Training procedure. Each experiment (either AL or Opti-

mistic Baseline) consists of 35 repetitions of the train-test procedure

with different pseudo-random number generator seeds. This allows

us to assess the stability of the AL policies by observing the variance

of our metrics. We choose 35 seeds as a good trade off between run

time and a high chance of observing a wider range of values around

the center of the distribution. As displayed in Figure 3, we repeat

each experiment in 5 different folds (Train+Test pairs) to observe
the robustness of the AL procedure against temporal variations.

Streaming AL Training. In all AL experiments we include an initial

waiting period of one day to simulate the collection of some unla-

beled data to fit the pre-processing pipeline. This mimics a realistic

scenario of deployment with no previous data. To reduce the num-

ber of numerical features generated by the AutoML pipeline (which

may contain redundant information) we apply PCA on the numer-

ical features. In preliminary experiments on Bank 2, we checked

that about 90 features can explain 99% of the data variance. Then

we decided to fix 90 features after PCA for all data sets to keep the

run time similar across experiments.

Observe that our pre-processing pipeline is trained on the first

day of unlabeled data, and used to transform all future data arriving

at the stream (Train or Test period). This is to mimic a day-1 system

deployment. However, after day-1, the pipeline could be updated

frequently but, for simplicity, we chose to fix it in our experiments.

For each run, several labeling iterations are processed after the

waiting period of one day, according to the diagram of Figure 2 –

see Section 2. Therefore the unlabeled pool grows with time, as does

the labeled pool during the AL training iterations, whose growth is

indirectly controlled by the time assumed for the team of analysts

to label each queried batch of events. Thus, if the team is, e.g., a

single analyst taking one hour to review a batch, we assume that

one hour of new data is inserted in the unlabeled pool after the

batch is labeled. For simplicity we use a fixed batch size and a fixed

time to review corresponding to an overall review rate of 1000

events per day. The only exception is for Bank 1, where, due to the

extreme class imbalance, we assumed twice the daily budget.

Regarding theMLmodel to train on the AL labeled data, we chose

a highly regularized Random Forest (RF) classifier from the scikit-

learn library with a maximum tree depth of 3 and 200 trees (other

hyper-parameters set to defaults).We did a small study on Bank 2 on

two time folds, where we either, i) varied the number of trees up to

1000, ii) reduced or increased the maximum depth, or iii) used other

models with various different levels of regularization (Feed Forward

Neural Networks, Support Vector Machines and Naïve Bayes). This

confirmed the benefits of regularization. Despite improvements

with 1000 trees, we chose 200 to speedup our simulations.

Optimistic Baseline Training. Here we assume access to fully labeled

data in the 4 weeks of the Train period. Additionally we apply a

more robust training methodology. We train a RF classifier with 300

trees and a maximum depth of 20. For each of the 35 models (one per

seed) we train 5 random configurations of hyper-parameters on the

first 3 weeks and evaluate on week 4 to select the best configuration.

The final configuration is re-fit on the 4 weeks.

For each model trained above, we also apply supervised feature

selection. The fraction of features to use is a hyper-parameter to

vary. In addition, we also vary the minimum number of samples in

a leaf node, a binary parameter (to use class weights or not), and

the complexity parameter for minimal cost-complexity pruning.

3.3.4 Evaluation metrics. We now discuss the performance metrics

used to measure the quality of a single AL experiment, as well as

to aggregate and summarize an experiment to compare runs.

Learning curves. A single AL experiment, consists of several itera-

tions where the labeled pool grows, and a sequence of models that

can be evaluated on the Test set are trained. Given a performance

metric (e.g., recall at a fixed false positive rate), we obtain a learning

curve where the metric usually improves during the simulation.

Since we run 35 simulations, we obtain a distribution of learning

curves, which we will visualize as percentile band plots in Section 4.

Since we run hundreds of experiments to test different policies,

datasets and time periods, it is not feasible to observe all learning

curves. Therefore we now define three aggregations to summarize

each set of learning curves and be able to interpret the results.

Learning curves rise. To summarise how quickly the learning curves

rise throughout the iterations (see, e.g., Figure 4), we compute the

Area Under the percentile 50 learning curve (Area P50), defined as

the curve tracing the median performance (over the 35 seeds) on

each iteration. In addition, we normalize it by the area under the

median optimistic baseline, which is the horizontal line correspond-

ing to the median performance of the optimistic model (denoted by

Norm Area P50). This allows us to compare folds relative to their

optimistic baseline, while correcting for temporal drift unrelated to

AL that also shifts that baseline.

5

ICAIF ’21, November 3–5, 2021, Online Barata, et al.

Learning curves variability. To measure the variance of the learning

curves (a good policy will always rise fast for all seeds), we use the

Area between the percentiles 10 and 90 (denoted Var in the results).

This is also normalized by the optimistic baseline area.

Quality of the final AL model. This is defined as the median perfor-

mance of the final AL model normalized by the performance of the

optimistic baseline (we denote it as Norm Final P50).

4 RESULTS
We now present results of the AL experiments for the various

datasets focusing first on the most imbalanced. In Table 3, we

show a summary of metrics for the five folds and all policies for

Bank 1. Each row displays values for a specific policy sequence (1-

stage, with only a cold policy, and 2-stage, without warm-up – see

dashed lines). We have five groups of columns (one per Fold) with
three metrics each (see Section 3.3.4): i) the normalized area under

percentile 50 (Norm Area P50, blue density scale), ii) the ranking

of the policy for the fold according to Norm Area P50 (center), and

iii) the percentile 50 of the final normalized AL model performance

(Norm Final P50, green density scale).

The rightmost pair of columns in Table 3 contains two metrics

that summarize the five folds, namely the average of the ranks

of each fold for each sequence (AVG Rank, orange density scale)

and the average of the normalized area between percentiles 10

and 90 (AVG Var, red density scale). The former provides an overall

measure of how fast the policy performance rises, whereas the latter

of how noisy the policy is, for this dataset. The table rows are sorted

by ascending AVG Rank. Therefore policies that perform better on

various folds are at the top. We choose to rank by Norm Area P50

rather than Norm Final P50 because it is more sensitive to how

quickly the learning curves rise, which is critical in systems that

need a good model to start acting as early as possible. Nevertheless,

the final model performance is important to tells us how close we

get to the optimistic baseline. We include 12 sequences specified

on the left. Random and QueryAll are baselines (Section 2.2.4).

Bank 1 is the most challenging dataset with an extremely large

class imbalance. Therefore we doubled the daily review budget and

trained in the full two weeks available for AL in the Train period

(see weeks 3 and 4 of each Fold in Figure 3). The best policies in

Table 3 outperform Random by a large margin (close to doubling

the performance in some cases). Furthermore, they are on par with

the QueryAll on folds 1, 4 and 5, both for the Area metric and the

Final performance. In folds 2 and 3, although QueryAll performs

substantially better, the group of top performing AL policies, based

on uncertainty sampling, continue to rank highly.

Observe that, except for the rank, all the metrics have been nor-

malized by the optimistic baseline, which is trained on extra data

(full 4 weeks of the train period vs 2 weeks in Figure 3) with super-

vised feature selection and hyper-parameter tuning. This additional

data would not be available in a realistic production setting and

the improved training is challenging for AL in streaming. This ex-

plains why most metrics are smaller than 1. The exception is Fold 5,
where Norm Final P50 is larger than 1 for various policies. This

can be explained by observing the learning curves for Fold 5 in

Figure 4, where we show the distribution of learning curves for the

best AL policy (left) and the Random policy (right)– represented by

the rising green bands. Three equally spaced percentile bands are

included, together with a solid gray line that traces the median. The

distribution of values for the optimistic baseline is represented in

the horizontal gray bands. All values have been normalized by the

percentile 50 of the optimistic baseline. In this fold we can see that

the distribution of values for the training of the optimistic baseline

is quite wide. Thus, despite being above 1, the final performance of

the AL model for the best policy is still within the central part of the

distribution. Comparing left and right, we confirm that the 3-stages

policy rises quick to high performance with a narrow variance.

It is also important to note that 3-stage sequences, i.e., with ODAL

warm-up, tend to outperform the corresponding setups without

ODAL, especially when paired with uncertainty based policies.

The overall conclusions, up to data set specific noise and some

temporal drift effects, are confirmed for the other datasets. Note

that AL typically only uses 2% to 10% of the number of samples

available to the optimistic baselines. For other datasets we only

present the policy rankings in Section 4.1, due to space constraints.

4.1 Aggregation over Datasets
In the previous section we discussed policy rankings and a pat-

tern emerged: 3-stage sequences were the best performing policies,

some 2-stage sequences also showed a good performance, and the

rankings of the least performing policies were unstable across folds.

A convenient way of aggregating this information, to provide a

clearer picture of the overall rankings, is to average out the policy

ranks over the studied datasets. This is displayed in Table 4. As

expected, overall, the QueryAll policy ranks first, even though it is

not always the top one for some datasets. The 3-stage policies based

on entropy or epistemic uncertainty rank very close to it, which in-

dicates that these are high quality AL policies. Regarding sequences

with Expected Model Change or the fraud percentile based Uncer-
tainty policy, despite ranking in the middle of the table, for some

datasets they rank very low, so they are not very stable/consistent.

On the other hand, the 2-stage policy with ODAL ranks between 5

and 7 across datasets, which reinforces its value as a stablewarm-up
policy. The Random policy ranks low, as expected. QBC also ranks

low, but this may be due to our specific/simple choice of committee

(a more detailed study is left to future work). Another important

observation is that all 3-stage policies rank higher than their 2-

stages counterpart. In Figure 5 we display a visualization that helps

understanding this improvement for the entropy based uncertainty

policy. On each row we present the average increase of sampled

positives, over all folds, when adding ODAL as a warm-up policy.

For each fold, the increase is the 10th percentile difference between

the positives obtained with a 3-stage sequence and the correspond-

ing 2-stage sequence, divided by the mean positives of the 2-stage

sequence. We can clearly observe that, for datasets with larger im-

balances, including ODAL lifts up this low percentile considerably

in early iterations (e.g., ∼ 3× the mean value for Bank 1). The effect
progressively disappears for milder imbalances – Merchant.

5 RELATEDWORK
Various AL methods have been proposed and surveyed in the liter-

ature in the last decades, [18, 25]. In our experiments we focused

on the cold start scenario with no historical data in a streaming

6

Active learning for imbalanced data under cold start ICAIF ’21, November 3–5, 2021, Online

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Table 3: Bank 1 rankings of AL policies using various folds (see also detailed description in the text).

0 5000 10000 15000 20000 25000
Labeled pool size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 T
ar

ge
t M

et
ri

c

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Random + ODAL + Uncertainty (entropy)

0 5000 10000 15000 20000 25000
Labeled pool size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

 T
ar

ge
t M

et
ri

c

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Baseline Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Policy Percentiles
50
0 - 100
16 - 83
33 - 66

Random

Figure 4: Learning curves distribution for Bank 1 in the best fold (5): The best sequence of policies (left panel green bands),
and the Random policy (right panel green band), normalized by the percentile 50 of the optimistic baseline (gray bands).

Table 4: Overall policy ranking: Average ranks for each
dataset (four central columns) and their overall average
(right column). Rows are sorted by the AVG column.

environment where the unlabeled data pool grows. This is in con-

trast with typical AL setups where the data source is static. Some

studies have appeared in the literature discussing AL methods in a

streaming data scenario [2, 3, 8, 9, 13, 22, 26–29]. Notably, Carcillo

et al. [2], investigated several AL methods for a credit card fraud

dataset. Instances were selected once a day with AL, according to

a fixed budget. In contrast, we consider scenarios where several

small batches of instances are processed during the day to exploit

the collected labels more frequently to update the AL policy, which

is important to avoid the selection of many similar instances in one

large batch. Furthermore, we presented a detailed analysis of AL

0

250

0

100

0

20

0.0 0.2 0.4 0.6 0.8 1.0
Fractional labeled pool size

5
0

Bank 1

Bank 2

Payment Processor

Merchant

In
cr

em
en

t i
n

P1
0

/ M
ea

n
(%

)

Figure 5: Boost in the number of positives sampled in 3-stages
vs 2-stages for the entropy based uncertainty policy (see de-
tailed description in the text).

curves in the fraud domain, to provide a more complete understand-

ing of its effectiveness for fraud detection, as well as investigated

new policies that were not considered in Carcillo et al. [2]. Finally,

in reference [2] no analysis of AL curves was presented, nor of their

variability, which is essential to observe the boost in ML model

performance at early stages of the AL process. Other studies in our

literature review, cited above, are either: i) focused on applying AL

to address concept drift, or ii) not focused on highly imbalanced

problems, or iii) not focused on dealing with the cold start problem.

6 CONCLUSIONS
We studied the problem of creating a small labeled dataset, with a

limited budget of annotations by analysts, in a streaming environ-

ment, in a cold start scenario (no previously labeled data and little

7

ICAIF ’21, November 3–5, 2021, Online Barata, et al.

or no unlabeled data) for highly imbalanced datasets. We proposed

an AL system adapted to these conditions and performed a detailed

study on four real world credit card fraud detection datasets, cov-

ering three use cases with several orders of magnitude in class

imbalances. We proposed various ingredients that proved essential,

namely: i) ODAL, a computationally efficient version of discrimi-

native active learning to quickly represent well the unlabeled pool

in the labeled pool, relying only on the labeled pool features dis-

tribution, and ii) the combination of ODAL, as a warmup-policy,

with other AL polices, in a 3-stage sequence to alleviate the cold

start problem in highly imbalanced datasets where it may take a

long time until some of the labels are found. We also proposed

two alternative uncertainty measures for the Uncertainty Sampling
policy – epistemic uncertainty and the fraud percentile measure –

as well as an alternative measure of disagreement based on rank

differences for Query By Committee.
In Section 3 we conducted detailed experimental studies, includ-

ing optimistic baselines and 12 different policy sequences to be

ranked. Our analysis showed that the best performing AL policies

are 3-stage sequences with ODAL warm-up and Uncertainty Sam-

pling as Hot policy (either entropy or epistemic). In particular, we

showed that the ODAL warm-up boosts the learning curves in the

earlier AL iterations. As a general rule, the final overall ranking

shows that including ODAL warm-up before any Hot policy boosts

its learning curves, especially for large class imbalance. Further-

more, the best performing sequence is often as good as the QueryAll
policy, it has low variance learning curves, it is competitive with

the optimistic baseline and substantially better than Random. Our

results show that the required amount of labeled examples, until

the learning curve stabilizes, often ranges between 3 000 to 6 000

for mild to intermediate class imbalances, and a bit over 20 000 for

extreme imbalances (∼ 2% to 10% of the optimistic baseline data).

To conclude, we comment on some future directions. In this

study, we have simulated the analyst queries by using the real la-

bels in the datasets. It would be interesting to perform experiments

with real analysts in a live environment to see if the performance

gains are confirmed. Finally, we have not touched upon other pos-

sible problems and improvements that could be important in a real

system. This includes the issue of evaluating the AL models online

– in our study we used an independent test set in the future of the

train set for evaluation. Related to this, it would also be interesting

to include online hyper-parameter tuning and model selection, as

well as online supervised feature selection, instead of using a static

set of features selected in an unsupervised way on the first day.

REFERENCES
[1] Bernardo Branco, Pedro Abreu, Ana Sofia Gomes, Mariana S. C. Almeida,

João Tiago Ascensão, and Pedro Bizarro. 2020. Interleaved Sequence RNNs

for Fraud Detection. In Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery; Data Mining (Virtual Event, CA, USA) (KDD
’20). Association for Computing Machinery, New York, NY, USA, 3101–3109.

https://doi.org/10.1145/3394486.3403361

[2] Fabrizio Carcillo, Yann-Aël Le Borgne, Olivier Caelen, and Gianluca Bontempi.

2018. Streaming active learning strategies for real-life credit card fraud detection:

assessment and visualization. International Journal of Data Science and Analytics
5 (2018), 285–300.

[3] Yu Cheng, Zhengzhang Chen, Lu Liu, Jiang Wang, Ankit Agrawal, and Alok

Choudhary. 2013. Feedback-Driven Multiclass Active Learning for Data Streams.

In Proceedings of the 22nd ACM International Conference on Information and
Knowledge Management (San Francisco, California, USA) (CIKM ’13). Association

for Computing Machinery, New York, NY, USA, 1311–1320. https://doi.org/10.

1145/2505515.2505528

[4] David A. Cohn. 1996. Neural Network Exploration Using Optimal Experiment

Design. Neural Networks 9, 6 (1996), 1071 – 1083. https://doi.org/10.1016/0893-

6080(95)00137-9

[5] Atsushi Fujii, Kentaro Inui, Takenobu Tokunaga, and Hozumi Tanaka. 1998. Se-

lective Sampling for Example-based Word Sense Disambiguation. Computational
Linguistics 24, 4 (1998), 573–597. https://www.aclweb.org/anthology/J98-4002

[6] Daniel Gissin and Shai Shalev-Shwartz. 2019. Discriminative Active Learning.

CoRR abs/1907.06347 (2019). arXiv:1907.06347 http://arxiv.org/abs/1907.06347

[7] Neil Houlsby, Jose Miguel Hernandez-Lobato, and Zoubin Ghahramani. 2014.

Cold-start Active Learning with Robust Ordinal Matrix Factorization. In Pro-
ceedings of the 31st International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR,

Bejing, China, 766–774. http://proceedings.mlr.press/v32/houlsby14.html

[8] Janardan and Shikha Mehta. 2017. Concept drift in Streaming Data Classification:

Algorithms, Platforms and Issues. Procedia Computer Science 122 (2017), 804 –
811. https://doi.org/10.1016/j.procs.2017.11.440 5th International Conference on

Information Technology and Quantitative Management, ITQM 2017.

[9] Janez Kranjc, Jasmina Smailović, Vid Podpečan, Miha Grčar, Martin Žnidaršič,

and Nada Lavrač. 2015. Active learning for sentiment analysis on data streams:

Methodology and workflow implementation in the ClowdFlows platform. Infor-
mation Processing and Management 51, 2 (2015), 187 – 203. https://doi.org/10.

1016/j.ipm.2014.04.001

[10] David D. Lewis and William A. Gale. 1994. A Sequential Algorithm for Training

Text Classifiers. In Proceedings of the 17th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (Dublin, Ireland)
(SIGIR ’94). Springer-Verlag, Berlin, Heidelberg, 3–12.

[11] F. T. Liu, K. M. Ting, and Z. Zhou. 2008. Isolation Forest. In 2008 Eighth IEEE
International Conference on Data Mining. 413–422.

[12] Paulo Marques, Miguel Araújo, Bruno Laraña, Nuno Diegues, Pedro Silva, and

Pedro Bizarro. 2019. Semantic-aware feature engineering, US20200090003A1

Patent (Pending).

[13] H. Nguyen, J. B. Gomes, M. Wu, H. Cao, J. Cao, and S. Krishnaswamy. 2015.

Active learning for accurate analysis of streaming partial discharge data. In

2015 IEEE Conference on Prognostics and Health Management (PHM). 1–5. https:

//doi.org/10.1109/ICPHM.2015.7245026

[14] Hieu T. Nguyen and Arnold Smeulders. 2004. Active Learning Using Pre-

Clustering. In Proceedings of the Twenty-First International Conference on Machine
Learning (Banff, Alberta, Canada) (ICML ’04). Association for Computing Ma-

chinery, New York, NY, USA, 79. https://doi.org/10.1145/1015330.1015349

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[16] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. 2015. Calibrating

Probability with Undersampling for Unbalanced Classification. In 2015 IEEE
Symposium Series on Computational Intelligence. 159–166.

[17] Nicholas Roy and Andrew McCallum. 2001. Toward Optimal Active Learning

through Sampling Estimation of Error Reduction. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 441–448.

[18] Burr Settles. 2009. Active Learning Literature Survey. Computer Sciences Tech-

nical Report 1648. University of Wisconsin–Madison. http://axon.cs.byu.edu/

~martinez/classes/778/Papers/settles.activelearning.pdf

[19] Burr Settles, Mark Craven, and Soumya Ray. 2008. Multiple-Instance Active

Learning. In Advances in Neural Information Processing Systems 20, J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis (Eds.). Curran Associates, Inc., 1289–1296.

http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf

[20] H. S. Seung,M. Opper, andH. Sompolinsky. 1992. Query by Committee. In Proceed-
ings of the Fifth Annual Workshop on Computational Learning Theory (Pittsburgh,

Pennsylvania, USA) (COLT ’92). Association for Computing Machinery, New

York, NY, USA, 287–294. https://doi.org/10.1145/130385.130417

[21] Mohammad Hossein Shaker and Eyke Hüllermeier. 2020. Aleatoric and Epistemic

Uncertainty with Random Forests. In Advances in Intelligent Data Analysis XVIII,
Michael R. Berthold, Ad Feelders, and Georg Krempl (Eds.). Springer International

Publishing, Cham, 444–456.

[22] J. Shan, H. Zhang, W. Liu, and Q. Liu. 2019. Online Active Learning Ensemble

Framework for Drifted Data Streams. IEEE Transactions on Neural Networks and
Learning Systems 30, 2 (2019), 486–498. https://doi.org/10.1109/TNNLS.2018.

2844332

[23] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.

Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.
[24] Zuobing Xu, Ram Akella, and Yi Zhang. 2007. Incorporating Diversity and

Density in Active Learning for Relevance Feedback. In Advances in Information
Retrieval, Giambattista Amati, Claudio Carpineto, and Giovanni Romano (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 246–257.

8

https://doi.org/10.1145/3394486.3403361
https://doi.org/10.1145/2505515.2505528
https://doi.org/10.1145/2505515.2505528
https://doi.org/10.1016/0893-6080(95)00137-9
https://doi.org/10.1016/0893-6080(95)00137-9
https://www.aclweb.org/anthology/J98-4002
https://arxiv.org/abs/1907.06347
http://arxiv.org/abs/1907.06347
http://proceedings.mlr.press/v32/houlsby14.html
https://doi.org/10.1016/j.procs.2017.11.440
https://doi.org/10.1016/j.ipm.2014.04.001
https://doi.org/10.1016/j.ipm.2014.04.001
https://doi.org/10.1109/ICPHM.2015.7245026
https://doi.org/10.1109/ICPHM.2015.7245026
https://doi.org/10.1145/1015330.1015349
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://papers.nips.cc/paper/3252-multiple-instance-active-learning.pdf
https://doi.org/10.1145/130385.130417
https://doi.org/10.1109/TNNLS.2018.2844332
https://doi.org/10.1109/TNNLS.2018.2844332

Active learning for imbalanced data under cold start ICAIF ’21, November 3–5, 2021, Online

[25] Yazhou Yang and Marco Loog. 2018. A benchmark and comparison of active

learning for logistic regression. Pattern Recognition 83 (2018), 401 – 415. https:

//doi.org/10.1016/j.patcog.2018.06.004

[26] Zhilin Yang, Jie Tang, and Yutao Zhang. 2014. Active Learning for Streaming

Networked Data. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management (Shanghai, China) (CIKM
’14). Association for Computing Machinery, New York, NY, USA, 1129–1138.

https://doi.org/10.1145/2661829.2661981

[27] Y. Zhang, P. Zhao, S. Niu, Q. Wu, J. Cao, J. Huang, and M. Tan. 2019. Online

Adaptive Asymmetric Active Learning with Limited Budgets. IEEE Transactions

on Knowledge and Data Engineering (2019), 1–1.

[28] X. Zhu, P. Zhang, X. Lin, and Y. Shi. 2010. Active Learning From Stream Data

Using Optimal Weight Classifier Ensemble. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 40, 6 (2010), 1607–1621. https://doi.org/10.

1109/TSMCB.2010.2042445

[29] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoff Holmes. 2011. Active

Learning with Evolving Streaming Data. In Machine Learning and Knowledge
Discovery in Databases, Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba,

and Michalis Vazirgiannis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

597–612.

9

https://doi.org/10.1016/j.patcog.2018.06.004
https://doi.org/10.1016/j.patcog.2018.06.004
https://doi.org/10.1145/2661829.2661981
https://doi.org/10.1109/TSMCB.2010.2042445
https://doi.org/10.1109/TSMCB.2010.2042445

	Abstract
	1 Introduction
	2 Methods
	2.1 Startup and preprocessing
	2.2 Policies

	3 Experiments
	3.1 Policy Parameters
	3.2 Data preparation
	3.3 Experimental Setup

	4 Results
	4.1 Aggregation over Datasets

	5 Related Work
	6 Conclusions
	References

